IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v124y2019icp180-198.html
   My bibliography  Save this article

An analysis of the historical trends in nuclear power plant construction costs: The Japanese experience

Author

Listed:
  • Matsuo, Yuhji
  • Nei, Hisanori

Abstract

In this study, we collected Japanese nuclear power plant construction cost data from official documents submitted by the electric utilities and conducted a quantitative analysis of the past trends. We found that the unit construction cost of Japanese nuclear power plants rose during the period from 1975 to 1980, when the “improvement and standardization” programs took place, and did not increase or decline significantly after that. We also observed significant economies of scale, even if we take into account interest during construction, as well as the so-called overnight cost. As far as we know, this study is the first attempt to analyze the total history of Japan's nuclear power generation until the Fukushima accident from the cost perspective. The findings could contribute to a better understanding of the economics of nuclear power, as similar studies in the United States and France tend to exhibit different results. The analyses in this study appear to reinforce the reliability of the cost estimation by the Japanese government, which has been used as the numerical basis for the current energy policies in Japan.

Suggested Citation

  • Matsuo, Yuhji & Nei, Hisanori, 2019. "An analysis of the historical trends in nuclear power plant construction costs: The Japanese experience," Energy Policy, Elsevier, vol. 124(C), pages 180-198.
  • Handle: RePEc:eee:enepol:v:124:y:2019:i:c:p:180-198
    DOI: 10.1016/j.enpol.2018.08.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518305962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.08.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K. & Gilbert, Alex & Nugent, Daniel, 2014. "Risk, innovation, electricity infrastructure and construction cost overruns: Testing six hypotheses," Energy, Elsevier, vol. 74(C), pages 906-917.
    2. Harris, Grant & Heptonstall, Phil & Gross, Robert & Handley, David, 2013. "Cost estimates for nuclear power in the UK," Energy Policy, Elsevier, vol. 62(C), pages 431-442.
    3. Grubler, Arnulf, 2010. "The costs of the French nuclear scale-up: A case of negative learning by doing," Energy Policy, Elsevier, vol. 38(9), pages 5174-5188, September.
    4. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    5. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    6. Lina Escobar Rangel and Francois Leveque, 2015. "Revisiting the Cost Escalation Curse of Nuclear Power: New Lessons from the French Experience," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    7. Lovering, Jessica R. & Nordhaus, Ted & Yip, Arthur, 2017. "Apples and oranges: Comparing nuclear construction costs across nations, time periods, and technologies," Energy Policy, Elsevier, vol. 102(C), pages 650-654.
    8. Koomey, Jonathan & Hultman, Nathan E., 2007. "A reactor-level analysis of busbar costs for US nuclear plants, 1970-2005," Energy Policy, Elsevier, vol. 35(11), pages 5630-5642, November.
    9. Koomey, Jonathan & Hultman, Nathan E. & Grubler, Arnulf, 2017. "A reply to “Historical construction costs of global nuclear power reactors”," Energy Policy, Elsevier, vol. 102(C), pages 640-643.
    10. Martin B. Zimmerman, 1982. "Learning Effects and the Commercialization of New Energy Technologies: The Case of Nuclear Power," Bell Journal of Economics, The RAND Corporation, vol. 13(2), pages 297-310, Autumn.
    11. Boccard, Nicolas, 2014. "The cost of nuclear electricity: France after Fukushima," Energy Policy, Elsevier, vol. 66(C), pages 450-461.
    12. François Lévêque & Lina Escobar Rangel, 2015. "Revisiting the Cost Escalation Curse of Nuclear Power Generation: New Lessons from the French Experience," Post-Print hal-01260975, HAL.
    13. John M. Marshall & Peter Navarro, 1991. "Costs of Nuclear Power Plant Construction: Theory and New Evidence," RAND Journal of Economics, The RAND Corporation, vol. 22(1), pages 148-154, Spring.
    14. Keng, C. W. Kenneth, 1985. "Forecasting Canadian nuclear power station construction costs," Energy Economics, Elsevier, vol. 7(4), pages 241-258, October.
    15. McCabe, Mark J, 1996. "Principals, Agents, and the Learning Curve: The Case of Steam-Electric Power Plant Design and Construction," Journal of Industrial Economics, Wiley Blackwell, vol. 44(4), pages 357-375, December.
    16. Cantor, Robin & Hewlett, James, 1988. "The economics of nuclear power : Further evidence on learning, economies of scale, and regulatory effects," Resources and Energy, Elsevier, vol. 10(4), pages 315-335, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Grubb & Paul Drummond & Alexandra Poncia & Will Mcdowall & David Popp & Sascha Samadi & Cristina Penasco & Kenneth Gillingham & Sjak Smulders & Matthieu Glachant & Gavin Hassall & Emi Mizuno &, 2021. "Induced innovation in energy technologies and systems: a review of evidence and potential implications for CO 2 mitigation," Post-Print hal-03189044, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    2. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    3. Wealer, B. & Bauer, S. & Hirschhausen, C.v. & Kemfert, C. & Göke, L., 2021. "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Perrier, Quentin, 2018. "The second French nuclear bet," Energy Economics, Elsevier, vol. 74(C), pages 858-877.
    5. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    6. Froese, Sarah & Kunz, Nadja C. & Ramana, M.V., 2020. "Too small to be viable? The potential market for small modular reactors in mining and remote communities in Canada," Energy Policy, Elsevier, vol. 144(C).
    7. Portugal-Pereira, J. & Ferreira, P. & Cunha, J. & Szklo, A. & Schaeffer, R. & Araújo, M., 2018. "Better late than never, but never late is better: Risk assessment of nuclear power construction projects," Energy Policy, Elsevier, vol. 120(C), pages 158-166.
    8. Peter A. Lang, 2017. "Nuclear Power Learning and Deployment Rates; Disruption and Global Benefits Forgone," Energies, MDPI, vol. 10(12), pages 1-21, December.
    9. Lina Escobar Rangel and Francois Leveque, 2015. "Revisiting the Cost Escalation Curse of Nuclear Power: New Lessons from the French Experience," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    10. Quentin Perrier, 2017. "The French Nuclear Bet," Working Papers 2017.18, Fondazione Eni Enrico Mattei.
    11. Koomey, Jonathan & Hultman, Nathan E. & Grubler, Arnulf, 2017. "A reply to “Historical construction costs of global nuclear power reactors”," Energy Policy, Elsevier, vol. 102(C), pages 640-643.
    12. Berthélemy, Michel & Escobar Rangel, Lina, 2015. "Nuclear reactors' construction costs: The role of lead-time, standardization and technological progress," Energy Policy, Elsevier, vol. 82(C), pages 118-130.
    13. Ben Wealer & Simon Bauer & Leonard Göke & Christian von Hirschhausen & Claudia Kemfert, 2019. "Economics of Nuclear Power Plant Investment: Monte Carlo Simulations of Generation III/III+ Investment Projects," Discussion Papers of DIW Berlin 1833, DIW Berlin, German Institute for Economic Research.
    14. Lucas W. Davis, 2012. "Prospects for Nuclear Power," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 49-66, Winter.
    15. Suna, Demet & Resch, Gustav, 2016. "Is nuclear economical in comparison to renewables?," Energy Policy, Elsevier, vol. 98(C), pages 199-209.
    16. Thomas, Steve, 2019. "Is it the end of the line for Light Water Reactor technology or can China and Russia save the day?," Energy Policy, Elsevier, vol. 125(C), pages 216-226.
    17. Kan, Xiaoming & Hedenus, Fredrik & Reichenberg, Lina, 2020. "The cost of a future low-carbon electricity system without nuclear power – the case of Sweden," Energy, Elsevier, vol. 195(C).
    18. Quentin Perrier, 2017. "The French nuclear bet," CIRED Working Papers halshs-01487296, HAL.
    19. Bent Flyvbjerg, 2021. "Four Ways to Scale Up: Smart, Dumb, Forced, and Fumbled," Papers 2101.11104, arXiv.org.
    20. Stephen Thomas & M. V. Ramana, 2022. "A hopeless pursuit? National efforts to promote small modular nuclear reactors and revive nuclear power," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:124:y:2019:i:c:p:180-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.