IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/86280.html
   My bibliography  Save this paper

Energy-saving technical change

Author

Listed:
  • Hassler, John
  • Krusell, Per
  • Olovsson, Conny

Abstract

We estimate an aggregate production function with constant elasticity of substitution between energy and a capital/labor composite using U.S. data. The implied measure of energysaving technical change appears to respond strongly to the oilprice shocks in the 1970s and has a negative medium-run correlation with capital/labor-saving technical change. Our findings are suggestive of a model of directed technical change, with low short-run substitutability between energy and capital/labor but significant substitutability over longer periods through technical change. We construct such a model, calibrate it based on the historical data, and use it to discuss possibilities for the future

Suggested Citation

  • Hassler, John & Krusell, Per & Olovsson, Conny, 2015. "Energy-saving technical change," LSE Research Online Documents on Economics 86280, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:86280
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/86280/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert B. Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
    2. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    3. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    4. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    5. Griffin, James M & Gregory, Paul R, 1976. "An Intercountry Translog Model of Energy Substitution Responses," American Economic Review, American Economic Association, vol. 66(5), pages 845-857, December.
    6. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 29-45.
    7. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    8. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    9. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Hassler & Per Krusell & Conny Olovsson, 2021. "Directed Technical Change as a Response to Natural Resource Scarcity," Journal of Political Economy, University of Chicago Press, vol. 129(11), pages 3039-3072.
    2. Berk, Istemi & Yetkiner, Hakan, 2014. "Energy prices and economic growth in the long run: Theory and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 228-235.
    3. Lafforgue, Gilles, 2008. "Stochastic technical change, non-renewable resource and optimal sustainable growth," Resource and Energy Economics, Elsevier, vol. 30(4), pages 540-554, December.
    4. Le, Thanh & Le Van, Cuong, 2018. "Research and development and sustainable growth over alternative types of natural resources," Economic Modelling, Elsevier, vol. 70(C), pages 215-229.
    5. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    6. Lucas Bretschger, 2018. "Greening Economy, Graying Society," CER-ETH Press, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich, edition 2, number 18-001.
    7. Dagmar Nelissen & Till Requate, 2007. "Pollution-reducing and resource-saving technological progress," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 5-44.
    8. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.
    9. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    10. Brock, William A. & Taylor, M. Scott, 2005. "Economic Growth and the Environment: A Review of Theory and Empirics," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 28, pages 1749-1821, Elsevier.
    11. Bergmann, Philip, 2019. "Oil price shocks and GDP growth: Do energy shares amplify causal effects?," Energy Economics, Elsevier, vol. 80(C), pages 1010-1040.
    12. Radoslaw Stefanski, 2014. "Structural Transformation and the Oil Price," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(3), pages 484-504, July.
    13. Bretschger, Lucas, 2015. "Energy prices, growth, and the channels in between: Theory and evidence," Resource and Energy Economics, Elsevier, vol. 39(C), pages 29-52.
    14. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    15. Andrei V. Bazhanov, 2008. "Maximin-optimal sustainable growth with nonrenewable resource and externalities," EERI Research Paper Series EERI_RP_2008_11, Economics and Econometrics Research Institute (EERI), Brussels.
    16. Bazhanov, Andrei V., 2013. "Constant-utility paths in a resource-based economy," Resource and Energy Economics, Elsevier, vol. 35(3), pages 342-355.
    17. Bazhanov, Andrei & Belyaev, Alexander, 2009. "Адекватность Закрытой Модели Для Российской Экономики В Задаче Сравнительного Анализа Энергетической Стратегии России [Adequacy of a closed model for Russian economy in the problem of comparative a," MPRA Paper 15109, University Library of Munich, Germany.
    18. Bazhanov, Andrei, 2008. "Maximin-optimal sustainable growth in a resource-based imperfect economy," MPRA Paper 16245, University Library of Munich, Germany, revised 13 Jul 2009.
    19. Li, George Yunxiong & Ascani, Andrea & Iammarino, Simona, 2024. "The material basis of modern technologies. A case study on rare metals," Research Policy, Elsevier, vol. 53(1).
    20. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).

    More about this item

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:86280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.