IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03799767.html
   My bibliography  Save this paper

Moving from Linear to Conic Markets for Electricity

Author

Listed:
  • Anubhav Ratha

    (DTU Electrical Engineering [Lyngby] - DTU - Danmarks Tekniske Universitet = Technical University of Denmark)

  • Pierre Pinson

    (Imperial College London)

  • Hélène Le Cadre

    (INOCS - Integrated Optimization with Complex Structure - Inria Lille - Nord Europe - Inria - Institut National de Recherche en Informatique et en Automatique - ULB - Université libre de Bruxelles - CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 - Centrale Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Ana Virag

    (VITO - Flemish Institute for Technological Research)

  • Jalal Kazempour

    (DTU Electrical Engineering [Lyngby] - DTU - Danmarks Tekniske Universitet = Technical University of Denmark)

Abstract

We propose a new forward electricity market framework that admits heterogeneous market participants with second-order cone strategy sets, who accurately express the nonlinearities in their costs and constraints through conic bids, and a network operator facing conic operational constraints. In contrast to the prevalent linear-programming-based electricity markets, we highlight how the inclusion of second-order cone constraints improves uncertainty-, asset-, and network-awareness of the market, which is key to the successful transition towards an electricity system based on weather-dependent renewable energy sources. We analyze our general market-clearing proposal using conic duality theory to derive efficient spatially-differentiated prices for the multiple commodities, comprised of energy and flexibility services. Under the assumption of perfect competition, we prove the equivalence of the centrally-solved market-clearing optimization problem to a competitive spatial price equilibrium involving a set of rational and self-interested participants and a price setter. Finally, under common assumptions, we prove that moving towards conic markets does not incur the loss of desirable economic properties of markets, namely market efficiency, cost recovery, and revenue adequacy. Our numerical studies focus on the specific use case of uncertainty-aware market design and demonstrate that the proposed conic market brings advantages over existing alternatives within the linear programming market framework.

Suggested Citation

  • Anubhav Ratha & Pierre Pinson & Hélène Le Cadre & Ana Virag & Jalal Kazempour, 2023. "Moving from Linear to Conic Markets for Electricity," Post-Print hal-03799767, HAL.
  • Handle: RePEc:hal:journl:hal-03799767
    Note: View the original document on HAL open archive server: https://inria.hal.science/hal-03799767v2
    as

    Download full text from publisher

    File URL: https://inria.hal.science/hal-03799767v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D’Ambrosio, Claudia & Lodi, Andrea & Wiese, Sven & Bragalli, Cristiana, 2015. "Mathematical programming techniques in water network optimization," European Journal of Operational Research, Elsevier, vol. 243(3), pages 774-788.
    2. Angelos Georghiou & Daniel Kuhn & Wolfram Wiesemann, 2019. "The decision rule approach to optimization under uncertainty: methodology and applications," Computational Management Science, Springer, vol. 16(4), pages 545-576, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anubhav Ratha & Pierre Pinson & Hélène Le Cadre & Ana Virag & Jalal Kazempour, 2022. "Moving from Linear to Conic Markets for Electricity," Working Papers hal-03799767, HAL.
    2. Anubhav Ratha & Pierre Pinson & H'el`ene Le Cadre & Ana Virag & Jalal Kazempour, 2021. "Moving from Linear to Conic Markets for Electricity," Papers 2103.12122, arXiv.org, revised Dec 2022.
    3. Xiangyi Fan & Grani A. Hanasusanto, 2024. "A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 526-542, March.
    4. Kakodkar, R. & He, G. & Demirhan, C.D. & Arbabzadeh, M. & Baratsas, S.G. & Avraamidou, S. & Mallapragada, D. & Miller, I. & Allen, R.C. & Gençer, E. & Pistikopoulos, E.N., 2022. "A review of analytical and optimization methodologies for transitions in multi-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Naoum-Sawaya, Joe & Ghaddar, Bissan & Arandia, Ernesto & Eck, Bradley, 2015. "Simulation-optimization approaches for water pump scheduling and pipe replacement problems," European Journal of Operational Research, Elsevier, vol. 246(1), pages 293-306.
    6. Selek, István & Ikonen, Enso, 2019. "Role of specific energy in decomposition of time-invariant least-cost reservoir filling problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 565-573.
    7. Morshedlou, Nazanin & González, Andrés D. & Barker, Kash, 2018. "Work crew routing problem for infrastructure network restoration," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 66-89.
    8. Yahao Yang & Zhong Huang & Pei Zhang, 2024. "Double-Observer-Based Bumpless Transfer Control of Switched Positive Systems," Mathematics, MDPI, vol. 12(11), pages 1-15, June.
    9. A. Candelieri & R. Perego & F. Archetti, 2018. "Bayesian optimization of pump operations in water distribution systems," Journal of Global Optimization, Springer, vol. 71(1), pages 213-235, May.
    10. Bonvin, Gratien & Demassey, Sophie & Le Pape, Claude & Maïzi, Nadia & Mazauric, Vincent & Samperio, Alfredo, 2017. "A convex mathematical program for pump scheduling in a class of branched water networks," Applied Energy, Elsevier, vol. 185(P2), pages 1702-1711.
    11. Rettinger, Moritz & Mandl, Christian & Minner, Stefan, 2024. "A data-driven approach for optimal operational and financial commodity hedging," European Journal of Operational Research, Elsevier, vol. 316(1), pages 341-360.
    12. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
    13. Kaizhao Sun & X. Andy Sun, 2023. "A two-level distributed algorithm for nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 84(2), pages 609-649, March.
    14. Ghaddar, Bissan & Claeys, Mathieu & Mevissen, Martin & Eck, Bradley J., 2017. "Polynomial optimization for water networks: Global solutions for the valve setting problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 450-459.
    15. Shiono, Naoshi & Suzuki, Hisatoshi & Saruwatari, Yasufumi, 2019. "A dynamic programming approach for the pipe network layout problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 52-61.
    16. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    17. Pecci, Filippo & Stoianov, Ivan & Ostfeld, Avi, 2021. "Relax-tighten-round algorithm for optimal placement and control of valves and chlorine boosters in water networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 690-698.
    18. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    19. Caldarola, Fabio & Maiolo, Mario, 2021. "A mathematical investigation on the invariance problem of some hydraulic indices," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    20. Cohen, Izack & Postek, Krzysztof & Shtern, Shimrit, 2023. "An adaptive robust optimization model for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 306(1), pages 83-104.

    More about this item

    Keywords

    OR in energy; spatial equilibrium; mechanism design; electricity markets; conic economics;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03799767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.