IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.12122.html
   My bibliography  Save this paper

Moving from Linear to Conic Markets for Electricity

Author

Listed:
  • Anubhav Ratha
  • Pierre Pinson
  • H'el`ene Le Cadre
  • Ana Virag
  • Jalal Kazempour

Abstract

We propose a new forward electricity market framework that admits heterogeneous market participants with second-order cone strategy sets, who accurately express the nonlinearities in their costs and constraints through conic bids, and a network operator facing conic operational constraints. In contrast to the prevalent linear-programming-based electricity markets, we highlight how the inclusion of second-order cone constraints improves uncertainty-, asset- and network-awareness of the market, which is key to the successful transition towards an electricity system based on weather-dependent renewable energy sources. We analyze our general market-clearing proposal using conic duality theory to derive efficient spatially-differentiated prices for the multiple commodities, comprising of energy and flexibility services. Under the assumption of perfect competition, we prove the equivalence of the centrally-solved market-clearing optimization problem to a competitive spatial price equilibrium involving a set of rational and self-interested participants and a price setter. Finally, under common assumptions, we prove that moving towards conic markets does not incur the loss of desirable economic properties of markets, namely market efficiency, cost recovery and revenue adequacy. Our numerical studies focus on the specific use case of uncertainty-aware market design and demonstrate that the proposed conic market brings advantages over existing alternatives within the linear programming market framework.

Suggested Citation

  • Anubhav Ratha & Pierre Pinson & H'el`ene Le Cadre & Ana Virag & Jalal Kazempour, 2021. "Moving from Linear to Conic Markets for Electricity," Papers 2103.12122, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2103.12122
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.12122
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angelos Georghiou & Daniel Kuhn & Wolfram Wiesemann, 2019. "The decision rule approach to optimization under uncertainty: methodology and applications," Computational Management Science, Springer, vol. 16(4), pages 545-576, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Pinson, 2023. "What may future electricity markets look like?," Papers 2302.02833, arXiv.org, revised Feb 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    2. Cohen, Izack & Postek, Krzysztof & Shtern, Shimrit, 2023. "An adaptive robust optimization model for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 306(1), pages 83-104.
    3. Anubhav Ratha & Pierre Pinson & Hélène Le Cadre & Ana Virag & Jalal Kazempour, 2022. "Moving from Linear to Conic Markets for Electricity," Working Papers hal-03799767, HAL.
    4. Xiangyi Fan & Grani A. Hanasusanto, 2024. "A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 526-542, March.
    5. Goerigk, Marc & Hartisch, Michael, 2023. "A framework for inherently interpretable optimization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1312-1324.
    6. Koubaa, Rayhane & Bacha, Seddik & Smaoui, Mariem & krichen, Lotfi, 2020. "Robust optimization based energy management of a fuel cell/ultra-capacitor hybrid electric vehicle under uncertainty," Energy, Elsevier, vol. 200(C).
    7. Anubhav Ratha & Pierre Pinson & Hélène Le Cadre & Ana Virag & Jalal Kazempour, 2023. "Moving from Linear to Conic Markets for Electricity," Post-Print hal-03799767, HAL.
    8. Rettinger, Moritz & Mandl, Christian & Minner, Stefan, 2024. "A data-driven approach for optimal operational and financial commodity hedging," European Journal of Operational Research, Elsevier, vol. 316(1), pages 341-360.
    9. Dimitris Bertsimas & Shimrit Shtern & Bradley Sturt, 2023. "A Data-Driven Approach to Multistage Stochastic Linear Optimization," Management Science, INFORMS, vol. 69(1), pages 51-74, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.12122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.