IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v21y2021i1d10.1007_s11067-020-09514-5.html
   My bibliography  Save this article

Clean Water Network Design for Refugee Camps

Author

Listed:
  • Özlem Karsu

    (Bilkent University)

  • Bahar Y. Kara

    (Bilkent University)

  • Elif Akkaya

    (Bilkent University)

  • Aysu Ozel

    (Bilkent University)

Abstract

Motivated by the recent rise in need for refugee camps, we address one of the key infrastructural problems in the establishment process: The clean water network design problem. We formulate the problem as a biobjective integer programming problem and determine the locations of the water source, water distribution units and the overall network design (pipelines), considering the objectives of minimizing cost (total network length) and maximizing accessibility (total walking distance) simultaneously. We solve the resulting model using exact and heuristic approaches that find the set (or a subset) of Pareto solutions and a set of approximate Pareto solutions, respectively. We demonstrate the applicability of our approach on a real-life problem in Gaziantep refugee camp and provide a detailed comparison of the solution approaches. The novel biobjective approach we propose will help the decision makers to make more informed design decisions in refugee camps, considering the trade-off between the two key criteria of cost and accessibility.

Suggested Citation

  • Özlem Karsu & Bahar Y. Kara & Elif Akkaya & Aysu Ozel, 2021. "Clean Water Network Design for Refugee Camps," Networks and Spatial Economics, Springer, vol. 21(1), pages 175-198, March.
  • Handle: RePEc:kap:netspa:v:21:y:2021:i:1:d:10.1007_s11067-020-09514-5
    DOI: 10.1007/s11067-020-09514-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-020-09514-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-020-09514-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D’Ambrosio, Claudia & Lodi, Andrea & Wiese, Sven & Bragalli, Cristiana, 2015. "Mathematical programming techniques in water network optimization," European Journal of Operational Research, Elsevier, vol. 243(3), pages 774-788.
    2. Kevin Curtin & Karen Hayslett-McCall & Fang Qiu, 2010. "Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models," Networks and Spatial Economics, Springer, vol. 10(1), pages 125-145, March.
    3. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    4. M. Bielik & R. König & S. Schneider & T. Varoudis, 2018. "Measuring the Impact of Street Network Configuration on the Accessibility to People and Walking Attractors," Networks and Spatial Economics, Springer, vol. 18(3), pages 657-676, September.
    5. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nzelibe, T. N. & Oyinloye M. A. & Ilesanmi F. A. & Popoola O. O., 2024. "Modelling the Nexus between Physical Infrastructure Adequacy and Livelihood Conditions of Internally Displaced Persons (IDPs) in Borno State, Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(5), pages 2017-2036, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E L Hillsman, 1984. "The p-Median Structure as a Unified Linear Model for Location—Allocation Analysis," Environment and Planning A, , vol. 16(3), pages 305-318, March.
    2. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    3. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    4. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    5. He, Yan & Wu, Tao & Zhang, Canrong & Liang, Zhe, 2015. "An improved MIP heuristic for the intermodal hub location problem," Omega, Elsevier, vol. 57(PB), pages 203-211.
    6. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    7. Ghaddar, Bissan & Claeys, Mathieu & Mevissen, Martin & Eck, Bradley J., 2017. "Polynomial optimization for water networks: Global solutions for the valve setting problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 450-459.
    8. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    9. Wen, Meilin & Iwamura, Kakuzo, 2008. "Fuzzy facility location-allocation problem under the Hurwicz criterion," European Journal of Operational Research, Elsevier, vol. 184(2), pages 627-635, January.
    10. K E Rosing, 1991. "Towards the Solution of the (Generalised) Multi-Weber Problem," Environment and Planning B, , vol. 18(3), pages 347-360, September.
    11. Kangxu Wang & Weifeng Wang & Tongtong Li & Shengjun Wen & Xin Fu & Xinhao Wang, 2023. "Optimizing Living Service Amenities for Diverse Urban Residents: A Supply and Demand Balancing Analysis," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    12. Shiono, Naoshi & Suzuki, Hisatoshi & Saruwatari, Yasufumi, 2019. "A dynamic programming approach for the pipe network layout problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 52-61.
    13. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
    14. Xin Feng & Alan T. Murray, 2018. "Allocation using a heterogeneous space Voronoi diagram," Journal of Geographical Systems, Springer, vol. 20(3), pages 207-226, July.
    15. Wei Ding & Ke Qiu, 2020. "Approximating the asymmetric p-center problem in parameterized complete digraphs," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 21-35, July.
    16. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    17. Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
    18. Pecci, Filippo & Stoianov, Ivan & Ostfeld, Avi, 2021. "Relax-tighten-round algorithm for optimal placement and control of valves and chlorine boosters in water networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 690-698.
    19. Peeters, Peter H., 1998. "Some new algorithms for location problems on networks," European Journal of Operational Research, Elsevier, vol. 104(2), pages 299-309, January.
    20. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:21:y:2021:i:1:d:10.1007_s11067-020-09514-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.