IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02930902.html
   My bibliography  Save this paper

Data: A collaborative ?
[Données: une stratégie collaborative?]

Author

Listed:
  • Jean-Sebastien Lacam

    (ESSCA Research Lab - ESSCA - Ecole Supérieure des Sciences Commerciales d'Angers, CleRMa - Clermont Recherche Management - ESC Clermont-Ferrand - École Supérieure de Commerce (ESC) - Clermont-Ferrand - UCA [2017-2020] - Université Clermont Auvergne [2017-2020])

Abstract

This study examines the interdependence of relational strategies and data management policies of SMEs during product innovation. The type of data management developed by a small firm to support its innovation efforts requires it to engage in competitive, vertical cooperative or coopetitive relationships. An empirical study of 109 leaders of French high-tech SMEs provides a descriptive and explanatory analysis of this question. This empirical study combines three theoretical dimensions: the characteristics of a Big Data policy, of an innovation product and of a relational strategy. We enrich the existing knowledge concerning the exploitation of data by SMEs by presenting a typology of their data strategies. We also find that Big data and Smart data policies are deployed by SMEs to support product innovation. Finally, we show that SMEs implement data management individually to support radical product innovation but will collaborate to support incremental product innovation. The nature of the data innovation guides the relational context of the SME. This study deepens the interdependence of data management and relational strategies among SMEs.

Suggested Citation

  • Jean-Sebastien Lacam, 2020. "Data: A collaborative ? [Données: une stratégie collaborative?]," Post-Print hal-02930902, HAL.
  • Handle: RePEc:hal:journl:hal-02930902
    DOI: 10.1016/j.hitech.2020.100370
    Note: View the original document on HAL open archive server: https://hal.science/hal-02930902
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02930902/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.hitech.2020.100370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
    2. Azra Hanić & Živka Pržulj & Marija Lazarević MoravÄ ević, 2016. "Characteristics of Human Resource Management in SMEs in Serbia," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 2, ejes_v2_i.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajesh Chidananda Reddy & Biplab Bhattacharjee & Debasisha Mishra & Anandadeep Mandal, 2022. "A systematic literature review towards a conceptual framework for enablers and barriers of an enterprise data science strategy," Information Systems and e-Business Management, Springer, vol. 20(1), pages 223-255, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludivine Ravat & Aurélie Hemonnet-Goujot & Sandrine Hollet-Haudebert, 2023. "Data-driven innovation capability of marketing: an exploratory study of its components and underlying processes," Post-Print hal-04151199, HAL.
    2. Ladi Daodu & Prof. Dr. Amiya Bhaumik, 2024. "Impacts of Innovation and Business Analytics on the Performance of the Service Sector in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 77-91, June.
    3. Iyer, Pooja & Bright, Laura F., 2024. "Navigating a paradigm shift: Technology and user acceptance of big data and artificial intelligence among advertising and marketing practitioners," Journal of Business Research, Elsevier, vol. 180(C).
    4. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    5. Bag, Sujoy & Tiwari, Manoj Kumar & Chan, Felix T.S., 2019. "Predicting the consumer's purchase intention of durable goods: An attribute-level analysis," Journal of Business Research, Elsevier, vol. 94(C), pages 408-419.
    6. Irina Maiorescu & Mihaela Bucur & Bogdan Georgescu & Daniel Moise & Vasile Alecsandru Strat & Ion Daniel Zgură, 2020. "Social Media and IOT Wearables in Developing Marketing Strategies. Do SMEs Differ From Large Enterprises?," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    7. Constant Berkhout & Abhi Bhattacharya & Carlos Bauer & Ross W. Johnson, 2024. "Revisiting the construct of data-driven decision making: antecedents, scope, and boundaries," SN Business & Economics, Springer, vol. 4(10), pages 1-23, October.
    8. Sidney Anderson, 2024. "Expanding data literacy to include data preparation: building a sound marketing analytics foundation," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 227-234, June.
    9. Cabrera-Sánchez, Juan-Pedro & Villarejo-Ramos, à ngel F., 2020. "Acceptance and use of big data techniques in services companies," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    10. Brewis, Claire & Dibb, Sally & Meadows, Maureen, 2023. "Leveraging big data for strategic marketing: A dynamic capabilities model for incumbent firms," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    11. Leogrande, Angelo, 2021. "The Destruction of Price-Representativeness," MPRA Paper 111239, University Library of Munich, Germany.
    12. Kumar, V. & Ramachandran, Divya & Kumar, Binay, 2021. "Influence of new-age technologies on marketing: A research agenda," Journal of Business Research, Elsevier, vol. 125(C), pages 864-877.
    13. Raphaël Maucuer & Alexandre Renaud & Sébastien Ronteau & Laurent Muzellec, 2022. "What can we learn from marketers? A bibliometric analysis of the marketing literature on business model research," Post-Print hal-03718522, HAL.
    14. De Bruyn, Arnaud & Viswanathan, Vijay & Beh, Yean Shan & Brock, Jürgen Kai-Uwe & von Wangenheim, Florian, 2020. "Artificial Intelligence and Marketing: Pitfalls and Opportunities," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 91-105.
    15. Rosita Capurro & Michele Galeotti & Stefano Garzella, 2018. ""Mondo reale-tradizionale" e "mondo digitale", strategie aziendali e web intelligence: il futuro del controllo e della gestione delle informazioni," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2018(2 Suppl.), pages 83-111.
    16. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    17. Jingmei Gao & Zahid Sarwar, 2024. "How do firms create business value and dynamic capabilities by leveraging big data analytics management capability?," Information Technology and Management, Springer, vol. 25(3), pages 283-304, September.
    18. Boccali, Filippo & Mariani, Marcello M. & Visani, Franco & Mora-Cruz, Alexandra, 2022. "Innovative value-based price assessment in data-rich environments: Leveraging online review analytics through Data Envelopment Analysis to empower managers and entrepreneurs," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    19. Eleonora Di Maria & Marco Bettiol & Mauro Capestro, 2023. "How Italian Fashion Brands Beat COVID-19: Manufacturing, Sustainability, and Digitalization," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    20. Jing Xu & Huijun Zhang, 2020. "Environmental Activism and Big Data: Building Green Social Capital in China," Sustainability, MDPI, vol. 12(8), pages 1-24, April.

    More about this item

    Keywords

    Data management; product innovation; competition; vertical cooperation; coopetition; SMEs; Big data challenges;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02930902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.