IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v180y2024ics0148296324002030.html
   My bibliography  Save this article

Navigating a paradigm shift: Technology and user acceptance of big data and artificial intelligence among advertising and marketing practitioners

Author

Listed:
  • Iyer, Pooja
  • Bright, Laura F.

Abstract

The advertising and marketing industry is witnessing a paradigm shift with the inclusion of big data and artificial intelligence, expecting practitioners to adapt to this rapidly transforming environment. Utilizing the Unified Theory of Acceptance and Use of Technology (UTAUT) model, a mixed methods approach examines how performance and effort expectancy mediate the psychological factors of anxiety and self-efficacy on behavioral intention to accept and engage with big data and AI systems amongst practitioners. To examine the psychological factors of UTAUT in relation to behavior, this research surveyed 100 mid-level advertising and marketing practitioners and found performance expectancy fully mediated anxiety, and effort expectancy partially mediated self-efficacy on behavioral intention. Qualitative insights identified psychological, social, and organizational factors, including fear of losing jobs, collaboration, motivation, training, social influence, and facilitating factors are critical to technology acceptance. Theoretical and managerial implications are discussed as they relate to this ongoing paradigm shift.

Suggested Citation

  • Iyer, Pooja & Bright, Laura F., 2024. "Navigating a paradigm shift: Technology and user acceptance of big data and artificial intelligence among advertising and marketing practitioners," Journal of Business Research, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:jbrese:v:180:y:2024:i:c:s0148296324002030
    DOI: 10.1016/j.jbusres.2024.114699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296324002030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2024.114699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armin Granulo & Christoph Fuchs & Stefano Puntoni, 2019. "Psychological reactions to human versus robotic job replacement," Nature Human Behaviour, Nature, vol. 3(10), pages 1062-1069, October.
    2. Yogesh K. Dwivedi & Nripendra P. Rana & Anand Jeyaraj & Marc Clement & Michael D. Williams, 2019. "Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model," Information Systems Frontiers, Springer, vol. 21(3), pages 719-734, June.
    3. Yaqoob, Ibrar & Hashem, Ibrahim Abaker Targio & Gani, Abdullah & Mokhtar, Salimah & Ahmed, Ejaz & Anuar, Nor Badrul & Vasilakos, Athanasios V., 2016. "Big data: From beginning to future," International Journal of Information Management, Elsevier, vol. 36(6), pages 1231-1247.
    4. Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
    5. Viswanath Venkatesh, 2022. "Adoption and use of AI tools: a research agenda grounded in UTAUT," Annals of Operations Research, Springer, vol. 308(1), pages 641-652, January.
    6. Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
    7. Athota, Vidya S. & Pereira, Vijay & Hasan, Zahid & Vaz, Daicy & Laker, Benjamin & Reppas, Dimitrios, 2023. "Overcoming financial planners’ cognitive biases through digitalization: A qualitative study," Journal of Business Research, Elsevier, vol. 154(C).
    8. Rust, Roland T., 2020. "The future of marketing," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 15-26.
    9. William Black & Barry J. Babin, 2019. "Multivariate Data Analysis: Its Approach, Evolution, and Impact," Springer Books, in: Barry J. Babin & Marko Sarstedt (ed.), The Great Facilitator, pages 121-130, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    2. Cabrera-Sánchez, Juan-Pedro & Villarejo-Ramos, à ngel F., 2020. "Acceptance and use of big data techniques in services companies," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    3. Miikka Blomster & Timo Koivumäki, 2022. "Exploring the resources, competencies, and capabilities needed for successful machine learning projects in digital marketing," Information Systems and e-Business Management, Springer, vol. 20(1), pages 123-169, March.
    4. Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
    5. Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
    6. Amy Van Looy, 2022. "Employees’ attitudes towards intelligent robots: a dilemma analysis," Information Systems and e-Business Management, Springer, vol. 20(3), pages 371-408, September.
    7. Jonas Wanner & Lukas-Valentin Herm & Kai Heinrich & Christian Janiesch, 2022. "The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2079-2102, December.
    8. Aimé, Isabelle & Berger-Remy, Fabienne & Laporte, Marie-Eve, 2022. "The brand, the persona and the algorithm: How datafication is reconfiguring marketing work☆," Journal of Business Research, Elsevier, vol. 145(C), pages 814-827.
    9. Shet, Sateesh.V. & Poddar, Tanuj & Wamba Samuel, Fosso & Dwivedi, Yogesh K., 2021. "Examining the determinants of successful adoption of data analytics in human resource management – A framework for implications," Journal of Business Research, Elsevier, vol. 131(C), pages 311-326.
    10. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
    11. Falana, Gbenga Ayodele & Olusola Esther (PhD) & Dagunduro, Muyiwa Emmanuel, 2023. "Effect of Big Data on Accounting Information Quality in Selected Firms in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(3), pages 789-806, March.
    12. Alexander Mayr & Philip Stahmann & Maximilian Nebel & Christian Janiesch, 2024. "Still doing it yourself? Investigating determinants for the adoption of intelligent process automation," Electronic Markets, Springer;IIM University of St. Gallen, vol. 34(1), pages 1-22, December.
    13. Sestino, Andrea & Prete, Maria Irene & Piper, Luigi & Guido, Gianluigi, 2020. "Internet of Things and Big Data as enablers for business digitalization strategies," Technovation, Elsevier, vol. 98(C).
    14. Jiming Hu & Yin Zhang, 2017. "Discovering the interdisciplinary nature of Big Data research through social network analysis and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 91-109, July.
    15. Haibei Chen & Xianglian Zhao, 2023. "Use intention of green financial security intelligence service based on UTAUT," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10709-10742, October.
    16. Ludivine Ravat & Aurélie Hemonnet-Goujot & Sandrine Hollet-Haudebert, 2023. "Data-driven innovation capability of marketing: an exploratory study of its components and underlying processes," Post-Print hal-04151199, HAL.
    17. Ladi Daodu & Prof. Dr. Amiya Bhaumik, 2024. "Impacts of Innovation and Business Analytics on the Performance of the Service Sector in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 77-91, June.
    18. Chen, Yanyan & Mandler, Timo & Meyer-Waarden, Lars, 2021. "Three decades of research on loyalty programs: A literature review and future research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 179-197.
    19. Syed Imran Zaman & Sharfuddin Ahmed Khan & Sahar Qabool & Himanshu Gupta, 2023. "How digitalization in banking improve service supply chain resilience of e-commerce sector? a technological adoption model approach," Operations Management Research, Springer, vol. 16(2), pages 904-930, June.
    20. Cristopher Siegfried Kopplin, 2021. "Two heads are better than one: matchmaking tools in coworking spaces," Review of Managerial Science, Springer, vol. 15(4), pages 1045-1069, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:180:y:2024:i:c:s0148296324002030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.