IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02114933.html
   My bibliography  Save this paper

Heterogeneity and Self-Organization of Complex Systems Through an Application to Financial Market with Multiagent Systems

Author

Listed:
  • Iris Lucas

    (RI2C - LITIS - Equipe Réseaux d'interactions et Intelligence Collective - LITIS - Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes - ULH - Université Le Havre Normandie - NU - Normandie Université - UNIROUEN - Université de Rouen Normandie - NU - Normandie Université - INSA Rouen Normandie - Institut national des sciences appliquées Rouen Normandie - INSA - Institut National des Sciences Appliquées - NU - Normandie Université)

  • Michel Cotsaftis

    (ECE Paris)

  • Cyrille Bertelle

    (RI2C - LITIS - Equipe Réseaux d'interactions et Intelligence Collective - LITIS - Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes - ULH - Université Le Havre Normandie - NU - Normandie Université - UNIROUEN - Université de Rouen Normandie - NU - Normandie Université - INSA Rouen Normandie - Institut national des sciences appliquées Rouen Normandie - INSA - Institut National des Sciences Appliquées - NU - Normandie Université)

Abstract

Multiagent systems (MAS) provide a useful tool for exploring the complex dynamics and behavior of financial markets and now MAS approach has been widely implemented and documented in the empirical literature. This paper introduces the implementation of an innovative multi-scale mathematical model for a computational agent-based financial market. The paper develops a method to quantify the degree of self-organization which emerges in the system and shows that the capacity of self-organization is maximized when the agent behaviors are heterogeneous. Numerical results are presented and analyzed, showing how the global market behavior emerges from specific individual behavior interactions.

Suggested Citation

  • Iris Lucas & Michel Cotsaftis & Cyrille Bertelle, 2017. "Heterogeneity and Self-Organization of Complex Systems Through an Application to Financial Market with Multiagent Systems," Post-Print hal-02114933, HAL.
  • Handle: RePEc:hal:journl:hal-02114933
    DOI: 10.1142/S0218127417502194
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    2. Lettau, Martin, 1997. "Explaining the facts with adaptive agents: The case of mutual fund flows," Journal of Economic Dynamics and Control, Elsevier, vol. 21(7), pages 1117-1147, June.
    3. Arthur, W.B. & Holland, J.H. & LeBaron, B. & Palmer, R. & Tayler, P., 1996. "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Working papers 9625, Wisconsin Madison - Social Systems.
    4. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    5. M. Cristelli & V. Alfi & L. Pietronero & A. Zaccaria, 2010. "Liquidity crisis, granularity of the order book and price fluctuations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 41-49, January.
    6. Gjerstad, Steven & Dickhaut, John, 1998. "Price Formation in Double Auctions," Games and Economic Behavior, Elsevier, vol. 22(1), pages 1-29, January.
    7. van den Berg, J.H. & van den Bergh, W.-M. & Kaymak, U., 2003. "Financial Markets Analysis by Probabilistic Fuzzy Modelling," ERIM Report Series Research in Management ERS-2003-036-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    9. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    10. Marco Bartolozzi, 2010. "A Multi Agent Model for the Limit Order Book Dynamics," Papers 1005.0182, arXiv.org, revised Oct 2010.
    11. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Stylized facts of financial markets and market crashes in Minority Games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(3), pages 514-524.
    12. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    13. Margaret A. Peteraf & Mark E. Bergen, 2003. "Scanning dynamic competitive landscapes: a market‐based and resource‐based framework," Strategic Management Journal, Wiley Blackwell, vol. 24(10), pages 1027-1041, October.
    14. Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001. "Agent-based simulation of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
    15. J. Doyne Farmer & Paolo Patelli & Ilija I. Zovko, 2003. "The Predictive Power of Zero Intelligence in Financial Markets," Papers cond-mat/0309233, arXiv.org, revised Feb 2004.
    16. Routledge, Bryan R, 1999. "Adaptive Learning in Financial Markets," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1165-1202.
    17. M. Bartolozzi, 2010. "A multi agent model for the limit order book dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 78(2), pages 265-273, November.
    18. Sandrine Jacob Leal & Mauro Napoletano, 2017. "Market Stability vs. Market Resilience: Regulatory Policies Experiments in an Agent-Based Model with Low- and High-Frequency Trading," Post-Print hal-01768876, HAL.
    19. Yamamoto, Ryuichi, 2011. "Order aggressiveness, pre-trade transparency, and long memory in an order-driven market," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1938-1963.
    20. G. Caldarelli & M. Marsili & Y. -C. Zhang, 1997. "A Prototype Model of Stock Exchange," Papers cond-mat/9709118, arXiv.org.
    21. B. LeBaron, 2001. "A builder's guide to agent-based financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 254-261.
    22. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    23. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Minority games and stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 228-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iris Lucas & Michel Cotsaftis & Cyrille Bertelle, 2018. "Self-Organization, Resilience and Robustness of Complex Systems Through an Application to Financial Market from an Agent-Based Approach," Post-Print hal-02114928, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iris Lucas & Michel Cotsaftis & Cyrille Bertelle, 2018. "Self-Organization, Resilience and Robustness of Complex Systems Through an Application to Financial Market from an Agent-Based Approach," Post-Print hal-02114928, HAL.
    2. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    3. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    4. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    5. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    6. Efstathios Panayi & Gareth W. Peters, 2015. "Stochastic simulation framework for the limit order book using liquidity-motivated agents," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-52.
    7. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    8. Isao Yagi & Yuji Masuda & Takanobu Mizuta, 2020. "Analysis of the Impact of High-Frequency Trading on Artificial Market Liquidity," Papers 2010.13038, arXiv.org.
    9. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    10. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    11. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    12. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    13. Georges, Christophre, 2008. "Staggered updating in an artificial financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2809-2825, September.
    14. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    15. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    16. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    17. Ryuichi Yamamoto, 2011. "Volatility clustering and herding agents: does it matter what they observe?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 6(1), pages 41-59, May.
    18. Jasmina Hasanhodzic & Andrew Lo & Emanuele Viola, 2011. "A computational view of market efficiency," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1043-1050.
    19. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    20. Baosheng Yuan & Kan Chen, 2006. "Impact of investor’s varying risk aversion on the dynamics of asset price fluctuations," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 1(2), pages 189-214, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02114933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.