IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v73y2010i1p41-49.html
   My bibliography  Save this article

Liquidity crisis, granularity of the order book and price fluctuations

Author

Listed:
  • M. Cristelli
  • V. Alfi
  • L. Pietronero
  • A. Zaccaria

Abstract

We introduce a microscopic model for the dynamics of the order book to study how the lack of liquidity influences price fluctuations. We use the average density of the stored orders (granularity $g$) as a proxy for liquidity. This leads to a Price Impact Surface which depends on both volume $\omega$ and $g$. The dependence on the volume (averaged over the granularity) of the Price Impact Surface is found to be a concave power law function $ _g\sim\omega^\delta$ with $\delta\approx 0.59$. Instead the dependence on the granularity is $\phi(\omega,g|\omega)\sim g^\alpha$ with $\alpha\approx-1$, showing a divergence of price fluctuations in the limit $g\to 0$. Moreover, even in intermediate situations of finite liquidity, this effect can be very large and it is a natural candidate for understanding the origin of large price fluctuations.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • M. Cristelli & V. Alfi & L. Pietronero & A. Zaccaria, 2010. "Liquidity crisis, granularity of the order book and price fluctuations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 41-49, January.
  • Handle: RePEc:spr:eurphb:v:73:y:2010:i:1:p:41-49
    DOI: 10.1140/epjb/e2009-00353-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2009-00353-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2009-00353-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Armand Joulin & Augustin Lefevre & Daniel Grunberg & Jean-Philippe Bouchaud, 2008. "Stock price jumps: news and volume play a minor role," Papers 0803.1769, arXiv.org.
    2. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    3. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    4. Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2002. "Single Curve Collapse of the Price Impact Function for the New York Stock Exchange," Papers cond-mat/0207428, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Garzarelli & Matthieu Cristelli & Andrea Zaccaria & Luciano Pietronero, 2011. "Memory effects in stock price dynamics: evidences of technical trading," Papers 1110.5197, arXiv.org.
    2. James Paulin & Anisoara Calinescu & Michael Wooldridge, 2018. "Understanding Flash Crash Contagion and Systemic Risk: A Micro-Macro Agent-Based Approach," Papers 1805.08454, arXiv.org.
    3. Kononovicius, Aleksejus & Ruseckas, Julius, 2019. "Order book model with herd behavior exhibiting long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 171-191.
    4. Iris Lucas & Michel Cotsaftis & Cyrille Bertelle, 2017. "Heterogeneity and Self-Organization of Complex Systems Through an Application to Financial Market with Multiagent Systems," Post-Print hal-02114933, HAL.
    5. Hernández, Juan Antonio & Benito, Rosa Marı´a & Losada, Juan Carlos, 2012. "An adaptive stochastic model for financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 899-908.
    6. Roberto Mota Navarro & Francois Leyvraz & Hern'an Larralde, 2023. "Dynamical properties of volume at the spread in the Bitcoin/USD market," Papers 2304.01907, arXiv.org, revised May 2023.
    7. Paulin, James & Calinescu, Anisoara & Wooldridge, Michael, 2019. "Understanding flash crash contagion and systemic risk: A micro–macro agent-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 200-229.
    8. Aleksejus Kononovicius & Julius Ruseckas, 2018. "Order book model with herd behavior exhibiting long-range memory," Papers 1809.02772, arXiv.org, revised Apr 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    2. Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2014. "Stylized facts of price gaps in limit order books: Evidence from Chinese stocks," Papers 1405.1247, arXiv.org.
    3. Willis, Geoff, 2011. "Pricing, liquidity and the control of dynamic systems in finance and economics," MPRA Paper 31137, University Library of Munich, Germany.
    4. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2021. "A Stationary Kyle Setup: Microfounding propagator models," Post-Print hal-03016486, HAL.
    5. Daniel Fricke & Thomas Lux, 2015. "The effects of a financial transaction tax in an artificial financial market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(1), pages 119-150, April.
    6. Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197, arXiv.org, revised May 2013.
    7. Stephan Grimm & Thomas Guhr, 2019. "How spread changes affect the order book: comparing the price responses of order deletions and placements to trades," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(6), pages 1-11, June.
    8. Clinet, Simon & Yoshida, Nakahiro, 2017. "Statistical inference for ergodic point processes and application to Limit Order Book," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1800-1839.
    9. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    10. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    11. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2020. "A Stationary Kyle Setup: Microfounding propagator models," Working Papers hal-03016486, HAL.
    12. A. Zaccaria & M. Cristelli & V. Alfi & F. Ciulla & L. Pietronero, 2009. "Asymmetric statistics of order books: The role of discreteness and evidence for strategic order placement," Papers 0906.1387, arXiv.org, revised May 2010.
    13. Michele Vodret & Iacopo Mastromatteo & Bence T'oth & Michael Benzaquen, 2020. "A Stationary Kyle Setup: Microfounding propagator models," Papers 2011.10242, arXiv.org, revised Feb 2021.
    14. Bence Toth & Yves Lemperiere & Cyril Deremble & Joachim de Lataillade & Julien Kockelkoren & Jean-Philippe Bouchaud, 2011. "Anomalous price impact and the critical nature of liquidity in financial markets," Papers 1105.1694, arXiv.org, revised Nov 2011.
    15. Duarte Queirós, Sílvio M., 2016. "Trading volume in financial markets: An introductory review," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 24-37.
    16. Marco Bartolozzi, 2010. "A Multi Agent Model for the Limit Order Book Dynamics," Papers 1005.0182, arXiv.org, revised Oct 2010.
    17. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    18. Jonathan Donier & Jean-Philippe Bouchaud, 2015. "Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    19. Gaël Giraud & Céline Rochon, 2010. "Transition to Equilibrium in International Trades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00657038, HAL.
    20. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:73:y:2010:i:1:p:41-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.