IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02114928.html
   My bibliography  Save this paper

Self-Organization, Resilience and Robustness of Complex Systems Through an Application to Financial Market from an Agent-Based Approach

Author

Listed:
  • Iris Lucas

    (RI2C - LITIS - Equipe Réseaux d'interactions et Intelligence Collective - LITIS - Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes - ULH - Université Le Havre Normandie - NU - Normandie Université - UNIROUEN - Université de Rouen Normandie - NU - Normandie Université - INSA Rouen Normandie - Institut national des sciences appliquées Rouen Normandie - INSA - Institut National des Sciences Appliquées - NU - Normandie Université)

  • Michel Cotsaftis

    (ECE Paris)

  • Cyrille Bertelle

    (RI2C - LITIS - Equipe Réseaux d'interactions et Intelligence Collective - LITIS - Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes - ULH - Université Le Havre Normandie - NU - Normandie Université - UNIROUEN - Université de Rouen Normandie - NU - Normandie Université - INSA Rouen Normandie - Institut national des sciences appliquées Rouen Normandie - INSA - Institut National des Sciences Appliquées - NU - Normandie Université)

Abstract

This paper introduces the implementation of a computational agent-based financial market model in which the system is described on both microscopic and macroscopic levels. This artificial financial market model is used to study the system response when a shock occurs. Indeed, when a market experiences perturbations, financial systems behavior can exhibit two different properties: resilience and robustness. Through simulations and different scenarios of market shocks, these system properties are studied. The results notably show that the emergence of collective herding behavior when market shock occurs leads to a temporary disruption of the system self-organization. Numerical simulations highlight that the market can absorb strong mono-shocks but can also be led to rupture by low but repeated perturbations.

Suggested Citation

  • Iris Lucas & Michel Cotsaftis & Cyrille Bertelle, 2018. "Self-Organization, Resilience and Robustness of Complex Systems Through an Application to Financial Market from an Agent-Based Approach," Post-Print hal-02114928, HAL.
  • Handle: RePEc:hal:journl:hal-02114928
    DOI: 10.1142/S021812741850044X
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2005. "Limit Order Book as a Market for Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1171-1217.
    2. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    3. J. Lorenz & S. Battiston & F. Schweitzer, 2009. "Systemic risk in a unifying framework for cascading processes on networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 441-460, October.
    4. Anand, Kartik & Gai, Prasanna & Kapadia, Sujit & Brennan, Simon & Willison, Matthew, 2013. "A network model of financial system resilience," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 219-235.
    5. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    6. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
    7. Marco Bartolozzi, 2010. "A Multi Agent Model for the Limit Order Book Dynamics," Papers 1005.0182, arXiv.org, revised Oct 2010.
    8. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Stylized facts of financial markets and market crashes in Minority Games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(3), pages 514-524.
    9. Edson Bastos Santos & Rama Cont, 2010. "The Brazilian Interbank Network Structure and Systemic Risk," Working Papers Series 219, Central Bank of Brazil, Research Department.
    10. Iris Lucas & Michel Cotsaftis & Cyrille Bertelle, 2017. "Heterogeneity and Self-Organization of Complex Systems Through an Application to Financial Market with Multiagent Systems," Post-Print hal-02114933, HAL.
    11. Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001. "Agent-based simulation of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
    12. Robert M. May & Simon A. Levin & George Sugihara, 2008. "Ecology for bankers," Nature, Nature, vol. 451(7181), pages 893-894, February.
    13. M. Bartolozzi, 2010. "A multi agent model for the limit order book dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 78(2), pages 265-273, November.
    14. Nier, Erlend & Yang, Jing & Yorulmazer, Tanju & Alentorn, Amadeo, 2007. "Network models and financial stability," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2033-2060, June.
    15. Yamamoto, Ryuichi, 2011. "Order aggressiveness, pre-trade transparency, and long memory in an order-driven market," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1938-1963.
    16. G. Caldarelli & M. Marsili & Y. -C. Zhang, 1997. "A Prototype Model of Stock Exchange," Papers cond-mat/9709118, arXiv.org.
    17. Duong, Huu Nhan & Kalev, Petko S. & Krishnamurti, Chandrasekhar, 2009. "Order aggressiveness of institutional and individual investors," Pacific-Basin Finance Journal, Elsevier, vol. 17(5), pages 533-546, November.
    18. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Minority games and stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 228-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesse M. Keenan & Benjamin D. Trump & William Hynes & Igor Linkov, 2021. "Exploring the Convergence of Resilience Processes and Sustainable Outcomes in Post-COVID, Post-Glasgow Economies," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    2. Tang, Chun & Liu, Xiaoxing & Zhou, Donghai, 2022. "Financial market resilience and financial development: A global perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iris Lucas & Michel Cotsaftis & Cyrille Bertelle, 2017. "Heterogeneity and Self-Organization of Complex Systems Through an Application to Financial Market with Multiagent Systems," Post-Print hal-02114933, HAL.
    2. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    3. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    4. Wladimir Ostrovsky, 2023. "Dealer Strategies in Agent-Based Models," Papers 2312.05943, arXiv.org.
    5. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    6. Erdinc Akyildirim & Shaen Corbet & Guzhan Gulay & Duc Khuong Nguyen & Ahmet Sensoy, 2019. "Order Flow Persistence in Equity Spot and Futures Markets: Evidence from a Dynamic Emerging Market," Working Papers 2019-011, Department of Research, Ipag Business School.
    7. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 991-1020, April.
    8. Anand, Kartik & Gai, Prasanna & Marsili, Matteo, 2012. "Rollover risk, network structure and systemic financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1088-1100.
    9. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2015, January-A.
    10. Groot, Robert D. & Musters, Pieter A.D., 2005. "Minority Game of price promotions in fast moving consumer goods markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 533-547.
    11. Paulin, James & Calinescu, Anisoara & Wooldridge, Michael, 2019. "Understanding flash crash contagion and systemic risk: A micro–macro agent-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 200-229.
    12. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 22, July-Dece.
    13. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    14. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    15. Jiahua Wang & Hongliang Zhu & Dongxin Li, 2018. "Price Dynamics in an Order-Driven Market with Bayesian Learning," Complexity, Hindawi, vol. 2018, pages 1-15, November.
    16. Spiros Bougheas & Alan Kirman, 2015. "Complex Financial Networks and Systemic Risk: A Review," Dynamic Modeling and Econometrics in Economics and Finance, in: Pasquale Commendatore & Saime Kayam & Ingrid Kubin (ed.), Complexity and Geographical Economics, edition 127, pages 115-139, Springer.
    17. Yong Shi & Bo Li & Guangle Du, 2021. "Pyramid scheme in stock market: a kind of financial market simulation," Papers 2102.02179, arXiv.org, revised Feb 2021.
    18. Vivien Lespagnol & Juliette Rouchier, 2014. "Trading Volume and Market Efficiency: An Agent Based Model with Heterogenous Knowledge about Fundamentals," Working Papers halshs-00997573, HAL.
    19. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    20. Efstathios Panayi & Gareth W. Peters, 2015. "Stochastic simulation framework for the limit order book using liquidity-motivated agents," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02114928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.