IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.13038.html
   My bibliography  Save this paper

Analysis of the Impact of High-Frequency Trading on Artificial Market Liquidity

Author

Listed:
  • Isao Yagi
  • Yuji Masuda
  • Takanobu Mizuta

Abstract

Many empirical studies have discussed market liquidity, which is regarded as a measure of a booming financial market. Further, various indicators for objectively evaluating market liquidity have also been proposed and their merits have been discussed. In recent years, the impact of high-frequency traders (HFTs) on financial markets has been a focal concern, but no studies have systematically discussed their relationship with major market liquidity indicators, including volume, tightness, resiliency, and depth. In this study, we used agent-based simulations to compare the major liquidity indicators in an artificial market where an HFT participated was compared to one where no HFT participated. The results showed that all liquidity indicators in the market where an HFT participated improved more than those in the market where no HFT participated. Furthermore, as a result of investigating the correlations between the major liquidity indicators in our simulations and the extant empirical literature, we found that market liquidity can be measured not only by the major liquidity indicators but also by execution rate. Therefore, it is suggested that it could be appropriate to employ execution rate as a novel liquidity indicator in future studies.

Suggested Citation

  • Isao Yagi & Yuji Masuda & Takanobu Mizuta, 2020. "Analysis of the Impact of High-Frequency Trading on Artificial Market Liquidity," Papers 2010.13038, arXiv.org.
  • Handle: RePEc:arx:papers:2010.13038
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.13038
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hee‐Joon Ahn & Kee‐Hong Bae & Kalok Chan, 2001. "Limit Orders, Depth, and Volatility: Evidence from the Stock Exchange of Hong Kong," Journal of Finance, American Finance Association, vol. 56(2), pages 767-788, April.
    2. Kenji Nishizaki & Akira Tsuchikawa & Tomoyuki Yagi, 2013. "Indicators Related to Liquidity in JGB Markets," Bank of Japan Review Series 13-E-3, Bank of Japan.
    3. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    4. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    5. Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001. "Agent-based simulation of a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
    6. Lee, Charles M C & Mucklow, Belinda & Ready, Mark J, 1993. "Spreads, Depths, and the Impact of Earnings Information: An Intraday Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 345-374.
    7. Tarun Chordia & Richard Roll & Avanidhar Subrahmanyam, 2001. "Market Liquidity and Trading Activity," Journal of Finance, American Finance Association, vol. 56(2), pages 501-530, April.
    8. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    9. Masanori Hirano & Kiyoshi Izumi & Hiroyasu Matsushima & Hiroki Sakaji, 2020. "Comparing Actual and Simulated HFT Traders' Behavior for Agent Design," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(3), pages 1-6.
    10. Kingsley Y. L. Fong & Craig W. Holden & Charles A. Trzcinka, 2017. "What Are the Best Liquidity Proxies for Global Research?," Review of Finance, European Finance Association, vol. 21(4), pages 1355-1401.
    11. Kiyoshi Kanazawa & Takumi Sueshige & Hideki Takayasu & Misako Takayasu, 2017. "Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders," Papers 1703.06739, arXiv.org, revised Mar 2018.
    12. Bank for International Settlements, 1999. "Recommendations for the design of liquid markets," CGFS Papers, Bank for International Settlements, number 13, October –.
    13. Olbrys, Joanna & Mursztyn, Michal, 2019. "Estimation of intraday stock market resiliency: Short-Time Fourier Transform approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. Huang, Roger D. & Stoll, Hans R., 1996. "Dealer versus auction markets: A paired comparison of execution costs on NASDAQ and the NYSE," Journal of Financial Economics, Elsevier, vol. 41(3), pages 313-357, July.
    15. Kee H. Chung & Kenneth A. Kim & Pattanaporn Kitsabunnarat, 2005. "Liquidity And Quote Clustering In A Market With Multiple Tick Sizes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(2), pages 177-195, June.
    16. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    17. Lo, Danny K. & Hall, Anthony D., 2015. "Resiliency of the limit order book," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 222-244.
    18. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    19. Joanna Olbrys & Michal Mursztyn, 2019. "Depth, tightness and resiliency as market liquidity dimensions: evidence from the Polish stock market," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 9(4), pages 308-326.
    20. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    21. Isao Yagi & Atsushi Nozaki & Takanobu Mizuta, 2017. "Investigation of the rule for investment diversification at the time of a market crash using an artificial market simulation," Evolutionary and Institutional Economics Review, Springer, vol. 14(2), pages 451-465, December.
    22. Ahn, Hee-Joon & Cai, Jun & Chan, Kalok & Hamao, Yasushi, 2007. "Tick size change and liquidity provision on the Tokyo Stock Exchange," Journal of the Japanese and International Economies, Elsevier, vol. 21(2), pages 173-194, June.
    23. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    24. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    25. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    26. Goyenko, Ruslan Y. & Holden, Craig W. & Trzcinka, Charles A., 2009. "Do liquidity measures measure liquidity?," Journal of Financial Economics, Elsevier, vol. 92(2), pages 153-181, May.
    27. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    28. Olbrys, Joanna & Mursztyn, Michal, 2019. "Measuring stock market resiliency with Discrete Fourier Transform for high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 248-256.
    29. Chiarella, Carl & He, Xue-Zhong, 2003. "Heterogeneous Beliefs, Risk, And Learning In A Simple Asset-Pricing Model With A Market Maker," Macroeconomic Dynamics, Cambridge University Press, vol. 7(4), pages 503-536, September.
    30. Tetsuo Kurosaki & Yusuke Kumano & Kota Okabe & Teppei Nagano, 2015. "Liquidity in JGB Markets: An Evaluation from Transaction Data," Bank of Japan Working Paper Series 15-E-2, Bank of Japan.
    31. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    32. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    33. Harris, Lawrence E, 1994. "Minimum Price Variations, Discrete Bid-Ask Spreads, and Quotation Sizes," The Review of Financial Studies, Society for Financial Studies, vol. 7(1), pages 149-178.
    34. repec:oup:rfinst:v:21:y:2017:i:4:p:1355-1401. is not listed on IDEAS
    35. Mr. Tonny Lybek & Mr. Abdourahmane Sarr, 2002. "Measuring Liquidity in Financial Markets," IMF Working Papers 2002/232, International Monetary Fund.
    36. Jun Muranaga, 1999. "Dynamics of Market Liquidity of Japanese Stocks: An Analysis of Tick-by-Tick Data of the Tokyo Stock Exchange," CGFS Papers chapters, in: Bank for International Settlements (ed.), Market Liquidity: Research Findings and Selected Policy Implications, volume 11, pages 1-25, Bank for International Settlements.
    37. Bessembinder, Hendrik, 2003. "Trade Execution Costs and Market Quality after Decimalization," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(4), pages 747-777, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Guan & Takanobu Mizuta & Isao Yagi, 2024. "Impact of arbitrage trading between an ETF and its underlying assets on market liquidity of their markets using an agent-based simulation," Journal of Computational Social Science, Springer, vol. 7(3), pages 2839-2870, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    2. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    3. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    4. Artur Akhmetov & Anna Burova & Natalia Makhankova & Alexey Ponomarenko, 2024. "Measuring Market Liquidity and Liquidity Mismatches Across Sectors," Springer Books, in: Alexander Karminsky & Mikhail Stolbov (ed.), Systemic Financial Risk, chapter 0, pages 131-194, Springer.
    5. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 991-1020, April.
    6. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    7. Jiahua Wang & Hongliang Zhu & Dongxin Li, 2018. "Price Dynamics in an Order-Driven Market with Bayesian Learning," Complexity, Hindawi, vol. 2018, pages 1-15, November.
    8. Alexandru Mandes & Peter Winker, 2017. "Complexity and model comparison in agent based modeling of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 469-506, October.
    9. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    10. Díaz, Antonio & Escribano, Ana, 2020. "Measuring the multi-faceted dimension of liquidity in financial markets: A literature review," Research in International Business and Finance, Elsevier, vol. 51(C).
    11. Chen, Yong & Eaton, Gregory W. & Paye, Bradley S., 2018. "Micro(structure) before macro? The predictive power of aggregate illiquidity for stock returns and economic activity," Journal of Financial Economics, Elsevier, vol. 130(1), pages 48-73.
    12. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    13. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    14. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    15. Iris Lucas & Michel Cotsaftis & Cyrille Bertelle, 2017. "Heterogeneity and Self-Organization of Complex Systems Through an Application to Financial Market with Multiagent Systems," Post-Print hal-02114933, HAL.
    16. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    17. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    18. Xin Guan & Takanobu Mizuta & Isao Yagi, 2024. "Impact of arbitrage trading between an ETF and its underlying assets on market liquidity of their markets using an agent-based simulation," Journal of Computational Social Science, Springer, vol. 7(3), pages 2839-2870, December.
    19. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    20. Kyubin Yim & Gabjin Oh & Seunghwan Kim, 2016. "Understanding Financial Market States Using an Artificial Double Auction Market," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.13038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.