Stochastic expansion for the pricing of call options with discrete dividends
Author
Abstract
Suggested Citation
DOI: 10.1080/1350486X.2011.620397
Note: View the original document on HAL open archive server: https://hal.science/hal-00507787
Download full text from publisher
References listed on IDEAS
- E. Benhamou & E. Gobet & M. Miri, 2010.
"Expansion Formulas For European Options In A Local Volatility Model,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 603-634.
- Eric Benhamou & Emmanuel Gobet & Mohammed Miri, 2010. "Expansion formulas for European options in a local volatility model," Post-Print hal-00325939, HAL.
- E. Benhamou & E. Gobet & M. Miri, 2012. "Analytical formulas for a local volatility model with stochastic rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 185-198, September.
- E. Benhamou & E. Gobet & M. Miri, 2009.
"Smart expansion and fast calibration for jump diffusions,"
Finance and Stochastics, Springer, vol. 13(4), pages 563-589, September.
- Eric Benhamou & Emmanuel Gobet & Mohammed Miri, 2007. "Smart expansion and fast calibration for jump diffusion," Papers 0712.3485, arXiv.org, revised Sep 2008.
- Eric Benhamou & Emmanuel Gobet & Mohammed Miri, 2009. "Smart expansion and fast calibration for jump diffusion," Post-Print hal-00200395, HAL.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gobet, Emmanuel & Miri, Mohammed, 2014. "Weak approximation of averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 475-504.
- Fabien Le Floc'h, 2021. "More stochastic expansions for the pricing of vanilla options with cash dividends," Papers 2106.12051, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Emmanuel Gobet & Ali Suleiman, 2013. "New approximations in local volatility models," Post-Print hal-00523369, HAL.
- Gobet, Emmanuel & Miri, Mohammed, 2014. "Weak approximation of averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 475-504.
- Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion formulas for European quanto options in a local volatility FX-LIBOR model," Papers 1801.01205, arXiv.org, revised Apr 2018.
- Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion Formulas For European Quanto Options In A Local Volatility Fx-Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-43, March.
- Romain Bompis & Emmanuel Gobet, 2012. "Asymptotic and non asymptotic approximations for option valuation," Post-Print hal-00720650, HAL.
- Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
- Julien Hok & Shih-Hau Tan, 2019. "Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 609-637, December.
- Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
- Elisa Alòs & Yan Yang, 2014. "A closed-form option pricing approximation formula for a fractional Heston model," Economics Working Papers 1446, Department of Economics and Business, Universitat Pompeu Fabra.
- Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
- Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
- Romain Bompis, 2017. "Weak approximations for arithmetic means of geometric Brownian motions and applications to Basket options," Working Papers hal-01502886, HAL.
- Elisa Alòs, 2012. "A decomposition formula for option prices in the Heston model and applications to option pricing approximation," Finance and Stochastics, Springer, vol. 16(3), pages 403-422, July.
- Ning Cai & Chenxu Li & Chao Shi, 2014. "Closed-Form Expansions of Discretely Monitored Asian Options in Diffusion Models," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 789-822, August.
- Elisa Alòs & Rafael De Santiago & Josep Vives, 2012. "Calibration of stochastic volatility models via second order approximation: the Heston model case," Economics Working Papers 1346, Department of Economics and Business, Universitat Pompeu Fabra.
- Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
- Jacquier, Antoine & Roome, Patrick, 2016.
"Large-maturity regimes of the Heston forward smile,"
Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
- Antoine Jacquier & Patrick Roome, 2014. "Large-Maturity Regimes of the Heston Forward Smile," Papers 1410.7206, arXiv.org, revised Aug 2015.
- Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
- Colin Turfus & Alexander Shubert, 2017. "ANALYTIC PRICING OF CoCo BONDS," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-26, August.
- Archil Gulisashvili & Peter Tankov, 2014. "Implied volatility of basket options at extreme strikes," Papers 1406.0394, arXiv.org.
More about this item
Keywords
analytic formula; stochastic approximation; discrete dividend; Equity option;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00507787. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.