IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i2p185-198.html
   My bibliography  Save this article

Analytical formulas for a local volatility model with stochastic rates

Author

Listed:
  • E. Benhamou
  • E. Gobet
  • M. Miri

Abstract

This paper presents new approximation formulae for European options in a local volatility model with stochastic interest rates. This is a companion paper to our work on perturbation methods for local volatility models [ Int. J. Theor. Appl. Finance , 2010, 13 (4), 603--634] for the case of stochastic interest rates. The originality of this approach is to model the local volatility of the discounted spot and to obtain accurate approximations with tight estimates of the error terms. This approach can also be used in the case of stochastic dividends or stochastic convenience yields. We finally provide numerical results to illustrate the accuracy with real market data.

Suggested Citation

  • E. Benhamou & E. Gobet & M. Miri, 2012. "Analytical formulas for a local volatility model with stochastic rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 185-198, September.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:2:p:185-198
    DOI: 10.1080/14697688.2010.523011
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2010.523011
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2010.523011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
    2. Emmanuel Gobet & Ali Suleiman, 2013. "New approximations in local volatility models," Post-Print hal-00523369, HAL.
    3. Gobet, Emmanuel & Miri, Mohammed, 2014. "Weak approximation of averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 475-504.
    4. Julien Hok & Shih-Hau Tan, 2019. "Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 609-637, December.
    5. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion formulas for European quanto options in a local volatility FX-LIBOR model," Papers 1801.01205, arXiv.org, revised Apr 2018.
    6. Maria Cristina Recchioni & Yu Sun & Gabriele Tedeschi, 2017. "Can negative interest rates really affect option pricing? Empirical evidence from an explicitly solvable stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1257-1275, August.
    7. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion Formulas For European Quanto Options In A Local Volatility Fx-Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-43, March.
    8. Recchioni, M.C. & Sun, Y., 2016. "An explicitly solvable Heston model with stochastic interest rate," European Journal of Operational Research, Elsevier, vol. 249(1), pages 359-377.
    9. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    10. Chih-Chen Hsu & An-Sing Chen & Shih-Kuei Lin & Ting-Fu Chen, 2017. "The affine styled-facts price dynamics for the natural gas: evidence from daily returns and option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(3), pages 819-848, April.
    11. Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    12. Romain Bompis & Emmanuel Gobet, 2012. "Asymptotic and non asymptotic approximations for option valuation," Post-Print hal-00720650, HAL.
    13. Pierre Etoré & Emmanuel Gobet, 2012. "Stochastic expansion for the pricing of call options with discrete dividends," Post-Print hal-00507787, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:2:p:185-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.