IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/31107.html
   My bibliography  Save this paper

Analytical approximation of the transition density in a local volatility model

Author

Listed:
  • Pagliarani, Stefano
  • Pascucci, Andrea

Abstract

We present a simplified approach to the analytical approximation of the transition density related to a general local volatility model. The methodology is sufficiently flexible to be extended to time-dependent coefficients, multi-dimensional stochastic volatility models, degenerate parabolic PDEs related to Asian options and also to include jumps.

Suggested Citation

  • Pagliarani, Stefano & Pascucci, Andrea, 2011. "Analytical approximation of the transition density in a local volatility model," MPRA Paper 31107, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:31107
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/31107/1/MPRA_paper_31107.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. E. Benhamou & E. Gobet & M. Miri, 2010. "Expansion Formulas For European Options In A Local Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 603-634.
    2. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    3. Victor Nistor & Wen Cheng & Nick Costanzino & John Liechty & Anna L. Mazzucato, 2011. "Closed-form asymptotics and numerical approximations of 1{D} parabolic equations with applications to option pricing," Post-Print hal-01284880, HAL.
    4. Steven L. Heston & Mark Loewenstein & Gregory A. Willard, 2007. "Options and Bubbles," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 359-390.
    5. Patrick Hagan & Diana Woodward, 1999. "Equivalent Black volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 147-157.
    6. Fabio Antonelli & Sergio Scarlatti, 2009. "Pricing options under stochastic volatility: a power series approach," Finance and Stochastics, Springer, vol. 13(2), pages 269-303, April.
    7. Martin Widdicks & Peter W. Duck & Ari D. Andricopoulos & David P. Newton, 2005. "The Black‐Scholes Equation Revisited: Asymptotic Expansions And Singular Perturbations," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 373-391, April.
    8. Luca Capriotti, 2006. "The Exponent Expansion: An Effective Approximation Of Transition Probabilities Of Diffusion Processes And Pricing Kernels Of Financial Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(07), pages 1179-1199.
    9. A. E. Whalley & P. Wilmott, 1997. "An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 307-324, July.
    10. Sam Howison, 2005. "Matched asymptotic expansions in financial engineering," OFRC Working Papers Series 2005mf01, Oxford Financial Research Centre.
    11. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    12. Luca Capriotti, 2006. "The Exponent Expansion: An Effective Approximation of Transition Probabilities of Diffusion Processes and Pricing Kernels of Financial Derivatives," Papers physics/0602107, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Pagliarani & Andrea Pascucci, 2017. "The exact Taylor formula of the implied volatility," Finance and Stochastics, Springer, vol. 21(3), pages 661-718, July.
    2. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    3. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion formulas for European quanto options in a local volatility FX-LIBOR model," Papers 1801.01205, arXiv.org, revised Apr 2018.
    4. Matthew Lorig & Ronnie Sircar, 2015. "Portfolio Optimization under Local-Stochastic Volatility: Coefficient Taylor Series Approximations & Implied Sharpe Ratio," Papers 1506.06180, arXiv.org.
    5. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion Formulas For European Quanto Options In A Local Volatility Fx-Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-43, March.
    6. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "A family of density expansions for L\'evy-type processes," Papers 1312.7328, arXiv.org.
    7. Matthew Lorig, 2014. "Indifference prices and implied volatilities," Papers 1412.5520, arXiv.org, revised Sep 2015.
    8. Weston Barger & Matthew Lorig, 2016. "Approximate pricing of European and Barrier claims in a local-stochastic volatility setting," Papers 1610.05728, arXiv.org, revised Apr 2017.
    9. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    10. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2014. "Asymptotics for $d$-dimensional L\'evy-type processes," Papers 1404.3153, arXiv.org, revised Nov 2014.
    11. Colin Turfus, 2018. "Quantifying Correlation Uncertainty Risk in Credit Derivatives Pricing," IJFS, MDPI, vol. 6(2), pages 1-20, April.
    12. Weston Barger & Matthew Lorig, 2018. "Optimal liquidation under stochastic price impact," Papers 1804.04170, arXiv.org.
    13. Weston Barger & Matthew Lorig, 2017. "Approximate pricing of European and Barrier claims in a local-stochastic volatility setting," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-31, June.
    14. Olesya Grishchenko & Xiao Han & Victor Nistor, 2018. "A volatility-of-volatility expansion of the option prices in the SABR stochastic volatility model," Papers 1812.09904, arXiv.org.
    15. Tim Leung & Matthew Lorig, 2016. "Optimal static quadratic hedging," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1341-1355, September.
    16. Stefano, Pagliarani & Pascucci, Andrea & Candia, Riga, 2011. "Expansion formulae for local Lévy models," MPRA Paper 34571, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
    2. Fannu Hu & Charles Knessl, 2010. "Asymptotics of Barrier Option Pricing Under the CEV Process," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(3), pages 261-300.
    3. Stefano, Pagliarani & Pascucci, Andrea & Candia, Riga, 2011. "Expansion formulae for local Lévy models," MPRA Paper 34571, University Library of Munich, Germany.
    4. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "Analytical expansions for parabolic equations," Papers 1312.3314, arXiv.org, revised Nov 2014.
    5. Luca Capriotti & Yupeng Jiang & Gaukhar Shaimerdenova, 2019. "Approximation Methods For Inhomogeneous Geometric Brownian Motion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-16, March.
    6. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    7. Chenyu Zhao & Misha Beek & Peter Spreij & Makhtar Ba, 2025. "Polynomial approximation of discounted moments," Finance and Stochastics, Springer, vol. 29(1), pages 63-95, January.
    8. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
    9. Gao, Jianwei, 2010. "An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 511-530, June.
    10. Emmanuel Gobet & Ali Suleiman, 2013. "New approximations in local volatility models," Post-Print hal-00523369, HAL.
    11. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion formulas for European quanto options in a local volatility FX-LIBOR model," Papers 1801.01205, arXiv.org, revised Apr 2018.
    12. Xiu, Dacheng, 2014. "Hermite polynomial based expansion of European option prices," Journal of Econometrics, Elsevier, vol. 179(2), pages 158-177.
    13. Carlos Miguel Glória & José Carlos Dias & Aricson Cruz, 2024. "Pricing levered warrants under the CEV diffusion model," Review of Derivatives Research, Springer, vol. 27(1), pages 55-84, April.
    14. Andrzej Daniluk & Rafa{l} Muchorski, 2015. "Approximations of Bond and Swaption Prices in a Black-Karasi\'{n}ski Model," Papers 1506.00697, arXiv.org.
    15. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion Formulas For European Quanto Options In A Local Volatility Fx-Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-43, March.
    16. Shane Miller & Eckhard Platen, 2010. "Real-World Pricing for a Modified Constant Elasticity of Variance Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(2), pages 147-175.
    17. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    18. José Carlos Dias & João Pedro Vidal Nunes & Aricson Cruz, 2020. "A note on options and bubbles under the CEV model: implications for pricing and hedging," Review of Derivatives Research, Springer, vol. 23(3), pages 249-272, October.
    19. Andrzej Daniluk & Rafał Muchorski, 2016. "Approximations Of Bond And Swaption Prices In A Black–Karasiński Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-32, May.
    20. Peter W. Duck & Chao Yang & David P. Newton & Martin Widdicks, 2009. "Singular Perturbation Techniques Applied To Multiasset Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 457-486, July.

    More about this item

    Keywords

    option pricing; analytical approximation; local volatility;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:31107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.