IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00476022.html
   My bibliography  Save this paper

Classical vs wavelet-based filters Comparative study and application to business cycle

Author

Listed:
  • Ibrahim Ahamada

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Jolivaldt

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this article, we compare the performance of Hodrickk-Prescott and Baxter-King filters with a method of filtering based on the multi-resolution properties of wavelets. We show that overall the three methods remain comparable if the theoretical cyclical component is defined in the usual waveband, ranging between six and thirty two quarters. However the approach based on wavelets provides information about the business cycle, for example, its stability over time which the other two filters do not provide. Based on Monte Carlo simulation experiments, our method applied to the American GDP using growth rate data shows that the estimate of the business cycle component is richer in information than that deduced from the level of GDP and includes additional information about the post 1980 period of great moderation.

Suggested Citation

  • Ibrahim Ahamada & Philippe Jolivaldt, 2010. "Classical vs wavelet-based filters Comparative study and application to business cycle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00476022, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00476022
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00476022
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00476022/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    2. Christoph Schleicher, 2002. "An Introduction to Wavelets for Economists," Staff Working Papers 02-3, Bank of Canada.
    3. Yogo, Motohiro, 2008. "Measuring business cycles: A wavelet analysis of economic time series," Economics Letters, Elsevier, vol. 100(2), pages 208-212, August.
    4. repec:zbw:bofrdp:2005_001 is not listed on IDEAS
    5. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    6. Ibrahim Ahmada & Mohamed Safouane Ben Aissa, 2005. "Changements Structurels dans la Dynamique de l'Inflation aux Etats-Unis : Approches Non Paramétriques," Annals of Economics and Statistics, GENES, issue 77, pages 157-172.
    7. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    8. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    9. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    10. Ramsey, J.B., 2002. "Wavelets in Economics and Finance: Past and Future," Working Papers 02-02, C.V. Starr Center for Applied Economics, New York University.
    11. Crowley, Patrick M., 2005. "An intuitive guide to wavelets for economists," Bank of Finland Research Discussion Papers 1/2005, Bank of Finland.
    12. Alain Guay & Pierre Saint-Amant, 2005. "Do the Hodrick-Prescott and Baxter-King Filters Provide a Good Approximation of Business Cycles?," Annals of Economics and Statistics, GENES, issue 77, pages 133-155.
    13. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    14. Singleton, Kenneth J., 1988. "Econometric issues in the analysis of equilibrium business cycle models," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 361-386.
    15. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    16. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    17. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benhmad, François, 2013. "Dynamic cyclical comovements between oil prices and US GDP: A wavelet perspective," Energy Policy, Elsevier, vol. 57(C), pages 141-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Ahamada & Philippe Jolivaldt, 2010. "Classical vs wavelet-based filters Comparative study and application to business cycle," Post-Print halshs-00476022, HAL.
    2. Philippe Jolivaldt & Ibrahim Ahamada, 2010. "Filtres usuels et filtre fondé sur les ondelettes : étude comparative et application au cycle économique," Économie et Prévision, Programme National Persée, vol. 195(4), pages 149-161.
    3. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    4. Roberto Astolfi & Dominique Ladiray & Gian Luigi Mazzi, 2001. "Business Cycle Extraction of Euro-Zone GDP: Direct versus Indirect Approach," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 70(3), pages 377-398.
    5. L.A. Gil-Alana, 2005. "Fractional Cyclical Structures & Business Cycles in the Specification of the US Real Output," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 99-126.
    6. Alain Guay & Pierre Saint-Amant, 2005. "Do the Hodrick-Prescott and Baxter-King Filters Provide a Good Approximation of Business Cycles?," Annals of Economics and Statistics, GENES, issue 77, pages 133-155.
    7. Alain Guay & Pierre St-Amant, 1996. "Do Mechanical Filters Provide a Good Approximation of Business Cycles?," Technical Reports 78, Bank of Canada.
    8. Marco Gallegati & Mauro Gallegati, 2005. "Wavelet variance and correlation analyses of output in G7 countries," Macroeconomics 0512017, University Library of Munich, Germany.
    9. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    10. Aadland, David, 2005. "Detrending time-aggregated data," Economics Letters, Elsevier, vol. 89(3), pages 287-293, December.
    11. Crespo-Cuaresma, Jesús & Fernández-Amador, Octavio, 2013. "Business cycle convergence in EMU: A first look at the second moment," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 265-284.
    12. Odile Chagny & Jörg Döpke, 2001. "Measures of the Output Gap in the Euro-Zone: An Empirical Assessment of Selected Methods," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 70(3), pages 310-332.
    13. Michael T. Belongia & Peter N. Ireland, 2016. "Money and Output: Friedman and Schwartz Revisited," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(6), pages 1223-1266, September.
    14. Pakko, Michael R, 2000. "The Cyclical Relationship between Output and Prices: An Analysis in the Frequency Domain," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(3), pages 382-399, August.
    15. David E. Giles & Chad N. Stroomer, 2004. "Identifying the Cycle of a Macroeconomic Time-Series Using Fuzzy Filtering," Econometrics Working Papers 0406, Department of Economics, University of Victoria.
    16. Celsa Machado, 2001. "Measuring Business Cycles: The Real Business Cycle Approach and Related Controversies," FEP Working Papers 107, Universidade do Porto, Faculdade de Economia do Porto.
    17. Zsolt Darvas & Gábor Vadas, 2003. "Univariate Potential Output Estimations for Hungary," MNB Working Papers 2003/8, Magyar Nemzeti Bank (Central Bank of Hungary).
    18. Pedersen, Torben Mark, 2001. "The Hodrick-Prescott filter, the Slutzky effect, and the distortionary effect of filters," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1081-1101, August.
    19. Benhmad, François, 2013. "Dynamic cyclical comovements between oil prices and US GDP: A wavelet perspective," Energy Policy, Elsevier, vol. 57(C), pages 141-151.
    20. Chentong Sun & Naiqian Li, 2023. "Extracting business cycles with three filters: A comparative study and application in the case of China," Bulletin of Economic Research, Wiley Blackwell, vol. 75(2), pages 254-269, April.

    More about this item

    Keywords

    Filters; HP; BK; wavelets; Monte Carlo Simulation break; business cycles.; Filtres; ondelettes; Simulation Monte Carlo; rupture; cycle économique.;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00476022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.