IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00187155.html
   My bibliography  Save this paper

Aggregation on bipolar scales

Author

Listed:
  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

The paper addresses the problem of extending aggregation operators typically defined on $[0,1]$ to the symmetric interval $[-1,1]$, where the ``0'' value plays a particular role (neutral value). We distinguish the cases where aggregation operators are associative or not. In the former case, the ``0'' value may play the role of neutral or absorbant element, leading to pseudo-addition and pseudo-multiplication. We address also in this category the special case of minimum and maximum defined on some finite ordinal scale. In the latter case, we find that a general class of extended operators can be defined using an interpolation approach, supposing the value of the aggregation to be known for ternary vectors.

Suggested Citation

  • Michel Grabisch, 2006. "Aggregation on bipolar scales," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00187155, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00187155
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00187155
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00187155/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michel Grabisch & Christophe Labreuche, 2016. "Fuzzy Measures and Integrals in MCDA," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 553-603, Springer.
    2. Michel Grabisch, 2003. "The Symmetric Sugeno Integral," Post-Print hal-00272084, HAL.
    3. Dieter Denneberg & Michel Grabisch, 2004. "Measure and integral with purely ordinal scales," Post-Print hal-00272078, HAL.
    4. Michel Grabisch & Bernard de Baets & Janos Fodor, 2004. "The quest for rings on bipolar scales," Post-Print hal-00271217, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Greco, Salvatore & Mousseau, Vincent & Słowiński, Roman, 2014. "Robust ordinal regression for value functions handling interacting criteria," European Journal of Operational Research, Elsevier, vol. 239(3), pages 711-730.
    2. Merad, Myriam & Dechy, Nicolas & Serir, Lisa & Grabisch, Michel & Marcel, Frédéric, 2013. "Using a multi-criteria decision aid methodology to implement sustainable development principles within an organization," European Journal of Operational Research, Elsevier, vol. 224(3), pages 603-613.
    3. Kojadinovic, Ivan, 2007. "A weight-based approach to the measurement of the interaction among criteria in the framework of aggregation by the bipolar Choquet integral," European Journal of Operational Research, Elsevier, vol. 179(2), pages 498-517, June.
    4. Christophe Labreuche & Michel Grabisch, 2008. "A value for bi-cooperative games," Post-Print halshs-00308738, HAL.
    5. Miguel Couceiro & Michel Grabisch, 2013. "On the poset of computation rules for nonassociative calculus," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00787750, HAL.
    6. Kojadinovic, Ivan & Marichal, Jean-Luc, 2007. "Entropy of bi-capacities," European Journal of Operational Research, Elsevier, vol. 178(1), pages 168-184, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch & Christophe Labreuche, 2016. "Fuzzy Measures and Integrals in MCDA," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 553-603, Springer.
    2. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    3. Miguel Couceiro & Michel Grabisch, 2013. "On the poset of computation rules for nonassociative calculus," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00787750, HAL.
    4. Dieter Denneberg & Michel Grabisch, 2004. "Measure and integral with purely ordinal scales," Post-Print hal-00272078, HAL.
    5. Michel Grabisch, 2015. "Fuzzy Measures and Integrals: Recent Developments," Post-Print hal-01302377, HAL.
    6. Luca Anzilli & Silvio Giove, 2020. "Multi-criteria and medical diagnosis for application to health insurance systems: a general approach through non-additive measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 559-582, December.
    7. Ulrich Faigle & Michel Grabisch, 2019. "Least Square Approximations and Linear Values of Cooperative Game," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381231, HAL.
    8. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    9. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2009. "A characterization of the 2-additive Choquet integral through cardinal information," Post-Print halshs-00445132, HAL.
    10. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    11. Christophe Labreuche & M. Grabisch, 2007. "The representation of conditional relative importance between criteria," Annals of Operations Research, Springer, vol. 154(1), pages 93-122, October.
    12. Mustapha Ridaoui & Michel Grabisch, 2016. "Choquet integral calculus on a continuous support and its applications," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(1), pages 73-93.
    13. repec:hal:pseose:hal-01373325 is not listed on IDEAS
    14. Miranda, Pedro & Grabisch, Michel & Gil, Pedro, 2006. "Dominance of capacities by k-additive belief functions," European Journal of Operational Research, Elsevier, vol. 175(2), pages 912-930, December.
    15. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    16. Bonifacio Llamazares, 2019. "An Analysis of Winsorized Weighted Means," Group Decision and Negotiation, Springer, vol. 28(5), pages 907-933, October.
    17. Christophe Labreuche, 2018. "An axiomatization of the Choquet integral in the context of multiple criteria decision making without any commensurability assumption," Annals of Operations Research, Springer, vol. 271(2), pages 701-735, December.
    18. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.
    19. Michel Grabisch & Salvatore Greco & Marc Pirlot, 2008. "Bipolar and bivariate models in multi-criteria decision analysis: descriptive and constructive approaches," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00340374, HAL.
    20. Theo Dijkstra, 2011. "Equally important criteria and demanding aggregation," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(6), pages 1483-1503, October.
    21. Hatami-Marbini, Adel & Tavana, Madjid, 2011. "An extension of the Electre I method for group decision-making under a fuzzy environment," Omega, Elsevier, vol. 39(4), pages 373-386, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00187155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.