IDEAS home Printed from https://ideas.repec.org/p/fip/fedkrw/96357.html
   My bibliography  Save this paper

R&D Capital and the Idea Production Function

Author

Listed:
  • Jakub Growiec
  • Peter McAdam
  • Jakub dup Muck

Abstract

We supplement the “Idea Production Function” (IPF), whereby research and development (R&D) activity leads to growth, with measures of R&D capital. We construct the R&D capital stock in the United States and estimate the IPF with patent applications as R&D output, allowing for a flexible treatment of R&D productivity (over 1968–2019). The estimated substitution elasticity between R&D inputs is 0.7−0.8, which suggests that R&D capital is an essential factor in producing ideas and complementary to R&D labor. We identify a positive trend in R&D labor productivity (roughly 1 percent) and a cyclical variation of R&D capital productivity. Rather than “ideas getting harder to find,” the R&D capital needed to find them has become scarce.

Suggested Citation

  • Jakub Growiec & Peter McAdam & Jakub dup Muck, 2023. "R&D Capital and the Idea Production Function," Research Working Paper RWP 23-05, Federal Reserve Bank of Kansas City.
  • Handle: RePEc:fip:fedkrw:96357
    DOI: 10.18651/RWP2023-05
    as

    Download full text from publisher

    File URL: https://www.kansascityfed.org/Research%20Working%20Papers/documents/9523/rwp23-05growiecmcadammuck.pdf
    File Function: Full Text
    Download Restriction: no

    File URL: https://libkey.io/10.18651/RWP2023-05?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Gordon, 2016. "The Rise and Fall of American Growth: The U.S. Standard of Living since the Civil War," Economics Books, Princeton University Press, edition 1, number 10544.
    2. Charles I. Jones, 1999. "Growth: With or Without Scale Effects?," American Economic Review, American Economic Association, vol. 89(2), pages 139-144, May.
    3. James B. Ang & Jakob B. Madsen, 2011. "Can Second-Generation Endogenous Growth Models Explain the Productivity Trends and Knowledge Production in the Asian Miracle Economies?," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1360-1373, November.
    4. Aum, Sangmin & Lee, Sang Yoon (Tim) & Shin, Yongseok, 2018. "Computerizing industries and routinizing jobs: Explaining trends in aggregate productivity," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 1-21.
    5. Zvi Griliches, 1998. "R&D and Productivity: The Econometric Evidence," NBER Books, National Bureau of Economic Research, Inc, number gril98-1, June.
    6. John G. Fernald & J. Christina Wang, 2016. "Why Has the Cyclicality of Productivity Changed? What Does It Mean?," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 465-496, October.
    7. Zvi Griliches, 1998. "Introduction to "R&D and Productivity: The Econometric Evidence"," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 1-14, National Bureau of Economic Research, Inc.
    8. Olivier de La Grandville & Rainer Klump, 2000. "Economic Growth and the Elasticity of Substitution: Two Theorems and Some Suggestions," American Economic Review, American Economic Association, vol. 90(1), pages 282-291, March.
    9. Ramey, Valerie A., 2020. "Secular stagnation or technological lull?," Journal of Policy Modeling, Elsevier, vol. 42(4), pages 767-777.
    10. Joonkyung Ha & Peter Howitt, 2007. "Accounting for Trends in Productivity and R&D: A Schumpeterian Critique of Semi-Endogenous Growth Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(4), pages 733-774, June.
    11. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    12. Bernstein, Jeffrey I. & Mamuneas, Theofanis P., 2006. "R&D depreciation, stocks, user costs and productivity growth for US R&D intensive industries," Structural Change and Economic Dynamics, Elsevier, vol. 17(1), pages 70-98, January.
    13. Griliches, Zvi, 1998. "R&D and Productivity," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226308869, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Growiec & Peter McAdam & Jakub Mućk, 2022. "Are Ideas Really Getting Harder To Find? R&D Capital and the Idea Production Function," KAE Working Papers 2022-071, Warsaw School of Economics, Collegium of Economic Analysis.
    2. Cassiman, Bruno & Perez-Castrillo, David & Veugelers, Reinhilde, 2002. "Endogenizing know-how flows through the nature of R&D investments," International Journal of Industrial Organization, Elsevier, vol. 20(6), pages 775-799, June.
    3. Rouven E. Haschka & Helmut Herwartz, 2022. "Endogeneity in pharmaceutical knowledge generation: An instrument‐free copula approach for Poisson frontier models," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(4), pages 942-960, November.
    4. Aldieri, Luigi & Vinci, Concetto Paolo, 2015. "R&D Migration: a cross-national analysis," MPRA Paper 62541, University Library of Munich, Germany.
    5. Schubert, Torben & Jäger, Angela & Türkeli, Serdar & Visentin, Fabiana, 2020. "Addressing the productivity paradox with big data: A literature review and adaptation of the CDM econometric model," MERIT Working Papers 2020-050, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    6. Yang, Jingjing & Khalil, Sana, 2014. "Do innovation dimensions matter in China’s cross-regional income differences?," MPRA Paper 62140, University Library of Munich, Germany, revised 14 Sep 2014.
    7. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    8. Gaétan de Rassenfosse & Adam B. Jaffe, 2017. "Econometric Evidence on the R&D Depreciation Rate," NBER Working Papers 23072, National Bureau of Economic Research, Inc.
    9. Haschka, Rouven E. & Herwartz, Helmut, 2020. "Innovation efficiency in European high-tech industries: Evidence from a Bayesian stochastic frontier approach," Research Policy, Elsevier, vol. 49(8).
    10. Minniti, Antonio & Venturini, Francesco, 2017. "The long-run growth effects of R&D policy," Research Policy, Elsevier, vol. 46(1), pages 316-326.
    11. Christopher A. Laincz & Pietro F. Peretto, 2004. "Scale Effects, An Error of Aggregation Not Specification: Empirical Evidence," DEGIT Conference Papers c009_037, DEGIT, Dynamics, Economic Growth, and International Trade.
    12. Steven Bond-Smith, 2021. "The unintended consequences of increasing returns to scale in geographical economics [Investing for prosperity: skills, infrastructure and innovation]," Journal of Economic Geography, Oxford University Press, vol. 21(5), pages 653-681.
    13. Andreas Freytag & Leo Wangler, 2008. "Strategic Trade Policy als Response to Climate Change? The Political Economy of Climate Policy," Jena Economics Research Papers 2008-001, Friedrich-Schiller-University Jena.
    14. Peter K. Kruse‐Andersen, 2023. "Testing R&D‐Based Endogenous Growth Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 1083-1110, October.
    15. Chu, Angus C. & Liao, Chih-Hsing & Xu, Rongxin & Chen, Ping-Ho, 2024. "Dynamic effects of tourism shocks on innovation in an open-economy Schumpeterian growth model," Economic Modelling, Elsevier, vol. 131(C).
    16. Francesco Di Comite & D'Artis Kancs, 2015. "Macro-Economic Models for R&D and Innovation Policies - A Comparison of QUEST, RHOMOLO, GEM-E3 and NEMESIS," JRC Research Reports JRC94323, Joint Research Centre.
    17. Jakub Growiec, 2019. "The Hardware-Software Model: A New Conceptual Framework of Production, R&D, and Growth with AI," KAE Working Papers 2019-042, Warsaw School of Economics, Collegium of Economic Analysis.
    18. Luigi Aldieri & Concetto Paolo Vinci, 2016. "Knowledge Migration: A Cross-National Analysis," De Economist, Springer, vol. 164(2), pages 109-123, June.
    19. Breul Moritz & Broekel Tom & Brachert Matthias, 2015. "Die Treiber der räumlichen Emergenz und Konzentration der Photovoltaik- Industrie in Deutschland," ZFW – Advances in Economic Geography, De Gruyter, vol. 59(3), pages 133-150, December.
    20. Herzer Dierk, 2022. "Semi-endogenous Versus Schumpeterian Growth Models: A Critical Review of the Literature and New Evidence," Review of Economics, De Gruyter, vol. 73(1), pages 1-55, April.

    More about this item

    Keywords

    macroeconomics; Idea Production Function (IPF); R&D capital;
    All these keywords.

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedkrw:96357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zach Kastens (email available below). General contact details of provider: https://edirc.repec.org/data/frbkcus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.