IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2012-12.html
   My bibliography  Save this paper

On the distribution of a discrete sample path of a square-root diffusion

Author

Abstract

We derive the multivariate moment generating function (mgf) for the stationary distribution of a discrete sample path of n observations of a square-root diffusion (CIR) process, X(t). The form of the mgf establishes that the stationary joint distribution of (X(t(1)),...,X(t(n))) for any fixed vector of observation times (t(1),...,t(n)) is a Krishnamoorthy-Parthasarathy multivariate gamma distribution. As a corollary, we obtain the mgf for the increment X(t+dt)-X(t), and show that the increment is equivalent in distribution to a scaled difference of two independent draws from a gamma distribution. Simple closed-form solutions for the moments of the increments are given.

Suggested Citation

  • Michael B. Gordy, 2012. "On the distribution of a discrete sample path of a square-root diffusion," Finance and Economics Discussion Series 2012-12, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2012-12
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/feds/2012/201212/201212abs.html
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/feds/2012/201212/201212pap.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    2. T. Royen, 1994. "On some multivariate gamma-distributions connected with spanning trees," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(2), pages 361-371, June.
    3. Jiang, George J & Knight, John L, 2002. "Estimation of Continuous-Time Processes via the Empirical Characteristic Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 198-212, April.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.
    2. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    3. repec:wyi:journl:002108 is not listed on IDEAS
    4. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    5. repec:wyi:journl:002117 is not listed on IDEAS
    6. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    7. repec:wyi:journl:002142 is not listed on IDEAS
    8. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.
    9. A. Hurn & J. Jeisman & K. Lindsay, 2007. "Teaching an Old Dog New Tricks: Improved Estimation of the Parameters of Stochastic Differential Equations by Numerical Solution of the Fokker-Planck Equation," NCER Working Paper Series 9, National Centre for Econometric Research.
    10. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    11. Bin Chen & Yongmiao Hong, 2013. "Characteristic Function-Based Testing for Multifactor Continuous-Time Markov Models via Nonparametri," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    12. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    13. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    14. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    15. Anna Cieslak & Pavol Povala, 2016. "Information in the Term Structure of Yield Curve Volatility," Journal of Finance, American Finance Association, vol. 71(3), pages 1393-1436, June.
    16. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    17. Nowman, K. Ben & Sorwar, Ghulam, 2005. "Derivative prices from interest rate models: results for Canada, Hong Kong, and United States," International Review of Financial Analysis, Elsevier, vol. 14(4), pages 428-438.
    18. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    19. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    20. Das, Sanjiv Ranjan, 1998. "A direct discrete-time approach to Poisson-Gaussian bond option pricing in the Heath-Jarrow-Morton model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(3), pages 333-369, November.
    21. Griselda Deelstra, 2000. "Long-term returns in stochastic interest rate models: applications," ULB Institutional Repository 2013/7590, ULB -- Universite Libre de Bruxelles.
    22. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2008. "The Devil is in the Detail: Hints for Practical Optimisation," Economic Analysis and Policy, Elsevier, vol. 38(2), pages 345-368, September.
    23. Bent Jesper Christensen & Michael Sørensen, 2008. "Optimal inference in dynamic models with conditional moment restrictions," CREATES Research Papers 2008-51, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2012-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.