IDEAS home Printed from https://ideas.repec.org/p/fgv/epgewp/197.html
   My bibliography  Save this paper

Um modelo geral de negociação em um mercado de capitais em que não existem investidores irracionais

Author

Listed:
  • Oliveira, Luiz Guilherme Schymura de

Abstract

O que faz com que, nos modelos de negociação com informações assimétricas no mercado de capitais, haja compra e venda de ativos? Seria o fato de as informações não serem as mesmas para todos os agentes que atuam na bolsa de valores o motivo da especulação? Faz sentido falar em compra e venda de ativos, quando os diversos agentes que compõem o mercado agem de forma racional e sabem que todos os demais agem assim? A grande motivação para a formulação deste trabalho foi a de que todos os artigos desenvolvidos até os dias de hoje - sobre equilíbrio com negociação em mercados de capitais - consideram de alguma maneira a presença de comportamento irracional de algum agente ou do mercado como um todo. Ver, por exemplo, os modelos apresentados em Kyle (1985) e Glosten e Milgrom (1985), onde a irracional idade existe no comportamento dos investidores denominados aleat6rios. Tais aplicadores demandam ativos de maneira aleat6ria, ou seja, não possuem uma estratégia que determine os seus desejos de compra E venda de ações. O que nos causou muita estranheza foi o fato de serem modelos de expectativas racionais, isto é, existe urna hip6tese de racionalidade entre OS indivíduos que negociam no setor financeiro. Portanto, a presença dos investidores aleat6rios torna esses trabalhos inconsistentes. O objetivo deste capítulo: retirar esses investidores aleatórios do mercado e, com isso, descobrir se sem a presença deles existir um ponto de alocação Pareto superior com a negociação.

Suggested Citation

  • Oliveira, Luiz Guilherme Schymura de, 1992. "Um modelo geral de negociação em um mercado de capitais em que não existem investidores irracionais," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 197, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
  • Handle: RePEc:fgv:epgewp:197
    as

    Download full text from publisher

    File URL: https://repositorio.fgv.br/bitstreams/a2e2370d-8f94-45a3-b737-9a999e2bff94/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renou, Ludovic & Schlag, Karl H., 2010. "Minimax regret and strategic uncertainty," Journal of Economic Theory, Elsevier, vol. 145(1), pages 264-286, January.
    2. Vitaly Pruzhansky, 2003. "Maximin Play in Two-Person Bimatrix Games," Tinbergen Institute Discussion Papers 03-101/1, Tinbergen Institute.
    3. Müller, Christoph, 2020. "Robust implementation in weakly perfect Bayesian strategies," Journal of Economic Theory, Elsevier, vol. 189(C).
    4. Vincent J. Vannetelbosch & P. Jean-Jacques Herings, 2000. "The equivalence of the Dekel-Fudenberg iterative procedure and weakly perfect rationalizability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(3), pages 677-687.
    5. Ambrus, Attila, 2006. "Coalitional Rationalizability," Scholarly Articles 3200266, Harvard University Department of Economics.
    6. Jackson, Matthew O. & Sonnenschein, Hugo F., 2003. "The Linking of Collective Decisions and Efficiency," Working Papers 1159, California Institute of Technology, Division of the Humanities and Social Sciences.
    7. Dominiak, Adam & Lee, Dongwoo, 2023. "Testing rational hypotheses in signaling games," European Economic Review, Elsevier, vol. 160(C).
    8. Roger Guesnerie & Pedro Jara-Moroni, 2007. "Expectational coordination in a class of economic models: Strategic substitutabilities versus strategic complementarities," PSE Working Papers halshs-00587837, HAL.
    9. Desgranges, Gabriel & Gauthier, Stéphane, 2016. "Rationalizability and efficiency in an asymmetric Cournot oligopoly," International Journal of Industrial Organization, Elsevier, vol. 44(C), pages 163-176.
    10. Andrés Carvajal, 2003. "Testable Restrictions of Nash Equilibrium in Games with Continuous Domains," Borradores de Economia 229, Banco de la Republica de Colombia.
    11. Pei, Ting & Takahashi, Satoru, 2019. "Rationalizable strategies in random games," Games and Economic Behavior, Elsevier, vol. 118(C), pages 110-125.
    12. Sent, Esther-Mirjam, 2004. "The legacy of Herbert Simon in game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 53(3), pages 303-317, March.
    13. Lawrence Christiano & Husnu Dalgic & Xiaoming Li, 2022. "Modelling the Great Recession as a Bank Panic: Challenges," Economica, London School of Economics and Political Science, vol. 89(S1), pages 200-238, June.
    14. Vitaly Pruzhansky, 2004. "A Discussion of Maximin," Tinbergen Institute Discussion Papers 04-028/1, Tinbergen Institute.
    15. Giacomo Bonanno & Cédric Dégremont, 2013. "Logic and Game Theory," Working Papers 11, University of California, Davis, Department of Economics.
    16. Gabriel Desgranges & Stéphane Gauthier, 2013. "Asymmetric information and rationalizability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(3), pages 789-804, November.
    17. , & , & ,, 2007. "Interim correlated rationalizability," Theoretical Economics, Econometric Society, vol. 2(1), pages 15-40, March.
    18. Asheim, G.B. & Dufwenberg, M., 1996. "Admissibility and Common Knowledge," Discussion Paper 1996-16, Tilburg University, Center for Economic Research.
    19. Gilles Grandjean & Ana Mauleon & Vincent Vannetelbosch, 2017. "Strongly rational sets for normal-form games," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 35-46, April.
    20. Steven J. Brams & Mehmet S. Ismail, 2022. "Every normal-form game has a Pareto-optimal nonmyopic equilibrium," Theory and Decision, Springer, vol. 92(2), pages 349-362, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fgv:epgewp:197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/epgvfbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.