IDEAS home Printed from https://ideas.repec.org/p/exs/wpaper/19-092.html
   My bibliography  Save this paper

Dependence risk analysis in energy, agricultural and precious metals commodities: A pair vine copula approach

Author

Listed:
  • Satish Kumar

    (ICFAI Foundation for Higher Education, India)

  • Aviral K. Tiwari

    (Montpellier Business School, Montpellier, France)

  • Ibrahim D. Raheem

    (EXCAS, Liège, Belgium)

  • Qiang Ji

    (Beijing, China)

Abstract

We apply pair vine copulas, specifically the C-vine and R-vine copulas, to examine the conditional multivariate dependence pattern/structure and R-vine copula-based value-at-risk (VaR) to assess financial portfolio risk. We examine the co-dependencies of 13 major commodity markets (which include three energy commodities, six agricultural commodities and four precious metals prices) from 2 January 2003 to 19 December 2016. Dividing our sample into three sub-periods, namely pre-GFC, GFC and post-GFC, we find that the dependencies among commodities undergo changes in a complex manner, changing in different financial conditions, and that the Student-t copula appears on the maximum number of occasions, especially during the GFC period, signifying the existence of fatter tails in the distributions of returns. We further show that the co-dependencies computed using R-vine copulas are best suited to compute the portfolio VaR during the considered time period.

Suggested Citation

  • Satish Kumar & Aviral K. Tiwari & Ibrahim D. Raheem & Qiang Ji, 2019. "Dependence risk analysis in energy, agricultural and precious metals commodities: A pair vine copula approach," Working Papers 19/092, European Xtramile Centre of African Studies (EXCAS).
  • Handle: RePEc:exs:wpaper:19/092
    as

    Download full text from publisher

    File URL: http://publications.excas.org/RePEc/exs/exs-wpaper/Dependence-risk-analysis-in-energy-agricultural-and-precious-metals-commodities.pdf
    File Function: Revised version, 2019
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Antonakakis, Nikolaos & Chang, Tsangyao & Cunado, Juncal & Gupta, Rangan, 2018. "The relationship between commodity markets and commodity mutual funds: A wavelet-based analysis," Finance Research Letters, Elsevier, vol. 24(C), pages 1-9.
    3. Arreola Hernandez, Jose, 2014. "Are oil and gas stocks from the Australian market riskier than coal and uranium stocks? Dependence risk analysis and portfolio optimization," Energy Economics, Elsevier, vol. 45(C), pages 528-536.
    4. Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Resources Policy, Elsevier, vol. 57(C), pages 224-235.
    5. Fernandez-Perez, Adrian & Frijns, Bart & Tourani-Rad, Alireza, 2016. "Contemporaneous interactions among fuel, biofuel and agricultural commodities," Energy Economics, Elsevier, vol. 58(C), pages 1-10.
    6. Nicola, Francesca de & De Pace, Pierangelo & Hernandez, Manuel A., 2016. "Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment," Energy Economics, Elsevier, vol. 57(C), pages 28-41.
    7. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, vol. 9(10), pages 1-34, September.
    8. Shahzad, Syed Jawad Hussain & Hernandez, Jose Arreola & Al-Yahyaee, Khamis Hamed & Jammazi, Rania, 2018. "Asymmetric risk spillovers between oil and agricultural commodities," Energy Policy, Elsevier, vol. 118(C), pages 182-198.
    9. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    10. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    11. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    12. Ji, Qiang & Fan, Ying, 2016. "How do China's oil markets affect other commodity markets both domestically and internationally?," Finance Research Letters, Elsevier, vol. 19(C), pages 247-254.
    13. Lahmiri, Salim & Uddin, Gazi Salah & Bekiros, Stelios, 2017. "Clustering of short and long-term co-movements in international financial and commodity markets in wavelet domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 947-955.
    14. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    15. HEINEN, Andréas & VALDESOGO, Alfonso, 2009. "Asymmetric CAPM dependence for large dimensions: the Canonical Vine Autoregressive Model," LIDAM Discussion Papers CORE 2009069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Mensi, Walid & Hkiri, Besma & Al-Yahyaee, Khamis H. & Kang, Sang Hoon, 2018. "Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 74-102.
    17. Aloui, Riadh & Ben Aïssa, Mohamed Safouane & Nguyen, Duc Khuong, 2013. "Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 719-738.
    18. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    19. Nazlioglu, Saban & Soytas, Ugur, 2012. "Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 34(4), pages 1098-1104.
    20. Ji, Qiang & Fan, Ying, 2016. "Evolution of the world crude oil market integration: A graph theory analysis," Energy Economics, Elsevier, vol. 53(C), pages 90-100.
    21. Bing-Yue Liu & Qiang Ji & Ying Fan, 2017. "A new time-varying optimal copula model identifying the dependence across markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 437-453, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah, Mohammad & Abakah, Emmanuel Joel Aikins & Wali Ullah, G M & Tiwari, Aviral Kumar & Khan, Isma, 2023. "Tail risk contagion across electricity markets in crisis periods," Energy Economics, Elsevier, vol. 127(PB).
    2. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    3. Lahiani, Amine & Mefteh-Wali, Salma & Vasbieva, Dinara G., 2021. "The safe-haven property of precious metal commodities in the COVID-19 era," Resources Policy, Elsevier, vol. 74(C).
    4. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    5. Zhou, Wei & Chen, Yan & Chen, Jin, 2022. "Risk spread in multiple energy markets: Extreme volatility spillover network analysis before and during the COVID-19 pandemic," Energy, Elsevier, vol. 256(C).
    6. Bernardina Algieri & Arturo Leccadito, 2020. "CARL and His POT: Measuring Risks in Commodity Markets," Risks, MDPI, vol. 8(1), pages 1-15, March.
    7. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2020. "Spillovers and co-movements between precious metals and energy markets: Implications on portfolio management," Resources Policy, Elsevier, vol. 69(C).
    8. Jain, Prachi & Maitra, Debasish, 2023. "Risk implications of dependence in the commodities: A copula-based analysis," Global Finance Journal, Elsevier, vol. 57(C).
    9. Shahzad, Farrukh & Bouri, Elie & Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Energy, agriculture, and precious metals: Evidence from time-varying Granger causal relationships for both return and volatility," Resources Policy, Elsevier, vol. 74(C).
    10. Nekhili, Ramzi & Sultan, Jahangir & Mensi, Walid, 2021. "Co-movements among precious metals and implications for portfolio management: A multivariate wavelet-based dynamic analysis," Resources Policy, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernardina Algieri & Arturo Leccadito, 2020. "CARL and His POT: Measuring Risks in Commodity Markets," Risks, MDPI, vol. 8(1), pages 1-15, March.
    2. Eissa, Mohamad Abdelaziz & Al Refai, Hisham, 2019. "Modelling the symmetric and asymmetric relationships between oil prices and those of corn, barley, and rapeseed oil," Resources Policy, Elsevier, vol. 64(C).
    3. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).
    4. Claudiu Albulescu & Aviral Tiwari & Qiang Ji, 2020. "Copula-based local dependence between energy, agriculture and metal commodity markets," Papers 2003.04007, arXiv.org.
    5. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    6. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    7. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    8. Cheng, Natalie Fang Ling & Hasanov, Akram Shavkatovich & Poon, Wai Ching & Bouri, Elie, 2023. "The US-China trade war and the volatility linkages between energy and agricultural commodities," Energy Economics, Elsevier, vol. 120(C).
    9. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    10. Khalfaoui, Rabeh & Shahzad, Umer & Ghaemi Asl, Mahdi & Ben Jabeur, Sami, 2023. "Investigating the spillovers between energy, food, and agricultural commodity markets: New insights from the quantile coherency approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 63-80.
    11. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    12. Ahmed, Abdullahi D. & Huo, Rui, 2021. "Volatility transmissions across international oil market, commodity futures and stock markets: Empirical evidence from China," Energy Economics, Elsevier, vol. 93(C).
    13. Chen, Peng & He, Limin & Yang, Xuan, 2021. "On interdependence structure of China's commodity market," Resources Policy, Elsevier, vol. 74(C).
    14. Sun, Yunpeng & Gao, Pengpeng & Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2023. "The asymmetric effects of oil price shocks on the world food prices: Fresh evidence from quantile-on-quantile regression approach," Energy, Elsevier, vol. 270(C).
    15. Mensi, Walid & Aslan, Aylin & Vo, Xuan Vinh & Kang, Sang Hoon, 2023. "Time-frequency spillovers and connectedness between precious metals, oil futures and financial markets: Hedge and safe haven implications," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 219-232.
    16. Gaete, Michael & Herrera, Rodrigo, 2023. "Diversification benefits of commodities in portfolio allocation: A dynamic factor copula approach," Journal of Commodity Markets, Elsevier, vol. 32(C).
    17. Xinyu Yuan & Jiechen Tang & Wing-Keung Wong & Songsak Sriboonchitta, 2020. "Modeling Co-Movement among Different Agricultural Commodity Markets: A Copula-GARCH Approach," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    18. Raza, Syed Ali & Guesmi, Khaled & Belaid, Fateh & Shah, Nida, 2022. "Time-frequency causality and connectedness between oil price shocks and the world food prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    19. Wanling Huang & André Varella Mollick & Khoa Huu Nguyen, 2017. "Dynamic responses and tail-dependence among commodities, the US real interest rate and the dollar," Empirical Economics, Springer, vol. 53(3), pages 959-997, November.
    20. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.

    More about this item

    Keywords

    R-vine; VaR; Dependence structure; Tree structure; Commodity markets;
    All these keywords.

    JEL classification:

    • F3 - International Economics - - International Finance
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exs:wpaper:19/092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anutechia Asongu Simplice (email available below). General contact details of provider: http://excas.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.