IDEAS home Printed from https://ideas.repec.org/p/eti/dpaper/13086.html
   My bibliography  Save this paper

An Empirical Analysis of the Effectiveness of Information Security Measures

Author

Listed:
  • IIDAKA Yuki
  • HANAMURA Kenichi
  • KOMATSU Ayako
  • SAITO Yukiko
  • TSUKADA Naotoshi

Abstract

We examine whether the adoption of information security measures can reduce the probability of computer virus infection by using firm-level survey data and probit regression analysis. We find that implementing two security measures—Web content filtering (WCF) and restriction of bringing in/out storage media or PCs (R_in/out)—can result in a statistically significant reduction of the probability. Calculating the average partial effect, we also indicate that the adoption of each of these measures decreases the estimated probability of infection by about 10% on average. In addition to these analyses, we show that the effectiveness of some security measures differs by firm size or by sector.

Suggested Citation

  • IIDAKA Yuki & HANAMURA Kenichi & KOMATSU Ayako & SAITO Yukiko & TSUKADA Naotoshi, 2013. "An Empirical Analysis of the Effectiveness of Information Security Measures," Discussion papers 13086, Research Institute of Economy, Trade and Industry (RIETI).
  • Handle: RePEc:eti:dpaper:13086
    as

    Download full text from publisher

    File URL: https://www.rieti.go.jp/jp/publications/dp/13e086.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    2. Lorena M. D'Agostino & Grazia D. Santangelo, 2012. "The Global Fragmentation of R&D Activities: The Home Region Perspective," DRUID Working Papers 12-06, DRUID, Copenhagen Business School, Department of Industrial Economics and Strategy/Aalborg University, Department of Business Studies.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank R. Lichtenberg, 2014. "Has Medical Innovation Reduced Cancer Mortality?," CESifo Economic Studies, CESifo Group, vol. 60(1), pages 135-177.
    2. Cowling, Marc & Ughetto, Elisa & Lee, Neil, 2018. "The innovation debt penalty: Cost of debt, loan default, and the effects of a public loan guarantee on high-tech firms," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 166-176.
    3. Alhassan Abdul-Wakeel Karakara & Evans Osabuohien, 2020. "ICT adoption, competition and innovation of informal firms in West Africa: a comparative study of Ghana and Nigeria," Journal of Enterprising Communities: People and Places in the Global Economy, Emerald Group Publishing Limited, vol. 14(3), pages 397-414, June.
    4. ManYing Kang & Marcel Ausloos, 2017. "An Inverse Problem Study: Credit Risk Ratings as a Determinant of Corporate Governance and Capital Structure in Emerging Markets: Evidence from Chinese Listed Companies," Economies, MDPI, vol. 5(4), pages 1-23, November.
    5. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    6. Laura Barbieri & Daniela Bragoli & Flavia Cortelezzi & Giovanni Marseguerra, 2015. "Public Support to Innovation Strategies," DISCE - Quaderni del Dipartimento di Scienze Economiche e Sociali dises1509, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    7. Massimo Colombo & Annalisa Croce & Samuele Murtinu, 2014. "Ownership structure, horizontal agency costs and the performance of high-tech entrepreneurial firms," Small Business Economics, Springer, vol. 42(2), pages 265-282, February.
    8. Olusola O. Ololade & Palesa P. Rametse, 2018. "Determining factors that enable managers to implement an environmental management system for sustainable construction: A case study in Johannesburg," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1720-1732, December.
    9. Leonard F.S. Wang & Arijit Mukherjee, 2014. "Patent Protection, Innovation and Technology Licensing," Australian Economic Papers, Wiley Blackwell, vol. 53(3-4), pages 245-254, December.
    10. Schankerman, Mark & Schuett, Florian, 2016. "Screening for Patent Quality," CEPR Discussion Papers 11688, C.E.P.R. Discussion Papers.
    11. Christoph P. Kiefer & Pablo Del Río González & Javier Carrillo‐Hermosilla, 2019. "Drivers and barriers of eco‐innovation types for sustainable transitions: A quantitative perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 155-172, January.
    12. Richard Harris & John Moffat, 2011. "R&D, Innovation and Exporting," SERC Discussion Papers 0073, Centre for Economic Performance, LSE.
    13. Wipo, 2011. "World Intellectual Property Report 2011- The Changing Face of Innovation," WIPO Economics & Statistics Series, World Intellectual Property Organization - Economics and Statistics Division, number 2011:944, April.
    14. Christian Rammer & Gastón P Fernández & Dirk Czarnitzki, 2021. "Artificial Intelligence and Industrial Innovation: Evidence from Firm-Level Data," Working Papers of Department of Economics, Leuven 674605, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    15. Adu-Gyamfi, Richard & Kuada, John & Asongu, Simplice, 2018. "An Integrative Framework for Entrepreneurship Research in Africa," MPRA Paper 89133, University Library of Munich, Germany.
    16. Davide Consoli & Pier Paolo Patrucco, 2011. "Complexity and the Coordination of Technological Knowledge: The Case of Innovation Platforms," Chapters, in: Handbook on the Economic Complexity of Technological Change, chapter 8 Edward Elgar Publishing.
    17. Chu, Angus C. & Pan, Shiyuan, 2013. "The Escape-Infringement Effect Of Blocking Patents On Innovation And Economic Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 17(4), pages 955-969, June.
    18. Thomas Bolli & Martin Woerter, 2013. "Technological Diversification and Innovation Performance," KOF Working papers 13-336, KOF Swiss Economic Institute, ETH Zurich.
    19. Barge-Gil, Andrés & López, Alberto, 2014. "R&D determinants: Accounting for the differences between research and development," Research Policy, Elsevier, vol. 43(9), pages 1634-1648.
    20. Pierpaolo Parrotta & Dario Pozzoli & Mariola Pytlikova, 2014. "The nexus between labor diversity and firm’s innovation," Journal of Population Economics, Springer;European Society for Population Economics, vol. 27(2), pages 303-364, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eti:dpaper:13086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: TANIMOTO, Toko (email available below). General contact details of provider: https://edirc.repec.org/data/rietijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.