IDEAS home Printed from https://ideas.repec.org/p/ete/afiper/485580.html
   My bibliography  Save this paper

Tail mutual exclusivity and tail-var lower bounds

Author

Listed:
  • Ka Chun Cheung
  • Michel Denuit
  • Jan Dhaene

Abstract

In this paper, we extend the concept of mutual exclusivity proposed by Dhaene and Denuit(1999) to its tail counterpart and baptise this new dependency structure as tail mutual exclusivity. Probability levels are first specified for each component of the random vector. Under this dependency structure, at most one exceedance over the corresponding VaRs is possible, the other components being zero in such a case. No condition is imposed when all components stay below the VaRs. Several properties of this new negative dependence concept are derived. We show that this dependence structure gives rise to the smallest value of Tail-VaR of a sum of risks within a given Fréchet space, provided that the probability level of the Tail-VaR is close enough to one.

Suggested Citation

  • Ka Chun Cheung & Michel Denuit & Jan Dhaene, 2015. "Tail mutual exclusivity and tail-var lower bounds," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485580, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
  • Handle: RePEc:ete:afiper:485580
    as

    Download full text from publisher

    File URL: https://lirias.kuleuven.be/retrieve/305078
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
    2. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    3. Hu, Taizhong & Wu, Zhiqiang, 1999. "On dependence of risks and stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 323-332, May.
    4. Cheung, Ka Chun & Lo, Ambrose, 2013. "Characterizations of counter-monotonicity and upper comonotonicity by (tail) convex order," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 334-342.
    5. Denuit, Michel & Dhaene, Jan & Ribas, Carmen, 2001. "Does positive dependence between individual risks increase stop-loss premiums?," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 305-308, June.
    6. Cheung, Ka Chun & Dhaene, Jan & Lo, Ambrose & Tang, Qihe, 2014. "Reducing risk by merging counter-monotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 58-65.
    7. Cheung, Ka Chun & Lo, Ambrose, 2014. "Characterizing mutual exclusivity as the strongest negative multivariate dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 180-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Pairwise counter-monotonicity," Papers 2302.11701, arXiv.org, revised May 2023.
    2. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    3. Jae Youn Ahn, 2015. "Negative Dependence Concept in Copulas and the Marginal Free Herd Behavior Index," Papers 1503.03180, arXiv.org.
    4. Hanbali, Hamza & Dhaene, Jan & Linders, Daniël, 2022. "Dependence bounds for the difference of stop-loss payoffs on the difference of two random variables," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 22-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaoubi, Ihsan & Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Etienne, 2020. "On sums of two counter-monotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 47-60.
    2. Chuancun Yin & Dan Zhu, 2016. "Sharp Convex Bounds on the Aggregate Sums–An Alternative Proof," Risks, MDPI, vol. 4(4), pages 1-8, September.
    3. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    4. Cheung, Ka Chun & Lo, Ambrose, 2014. "Characterizing mutual exclusivity as the strongest negative multivariate dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 180-190.
    5. Chuancun Yin & Dan Zhu, 2016. "Sharp convex bounds on the aggregate sums--An alternative proof," Papers 1603.05373, arXiv.org, revised May 2016.
    6. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Pairwise counter-monotonicity," Papers 2302.11701, arXiv.org, revised May 2023.
    7. Mario Ghossoub & Qinghua Ren & Ruodu Wang, 2024. "Counter-monotonic Risk Sharing with Heterogeneous Distortion Risk Measures," Papers 2412.00655, arXiv.org.
    8. Denuit, Michel & Lefevre, Claude & Utev, Sergey, 2002. "Measuring the impact of dependence between claims occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 1-19, February.
    9. Frostig, Esther, 2006. "On risk dependence and mrl ordering," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 231-243, February.
    10. Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
    11. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    12. Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100, arXiv.org, revised Feb 2011.
    13. Jan L. M. Dhaene & Moshe A. Milevsky, 2024. "Egalitarian pooling and sharing of longevity risk', a.k.a. 'The many ways to skin a tontine cat," Papers 2402.00855, arXiv.org.
    14. Chan, Wai-Sum & Yang, Hailiang & Zhang, Lianzeng, 2003. "Some results on ruin probabilities in a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 345-358, July.
    15. Anastasiadis, Simon & Chukova, Stefanka, 2012. "Multivariate insurance models: An overview," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 222-227.
    16. Takaaki Koike & Liyuan Lin & Ruodu Wang, 2022. "Joint mixability and notions of negative dependence," Papers 2204.11438, arXiv.org, revised Jan 2024.
    17. Jae Youn Ahn, 2015. "Negative Dependence Concept in Copulas and the Marginal Free Herd Behavior Index," Papers 1503.03180, arXiv.org.
    18. Ribas, Carme & Marin-Solano, Jesus & Alegre, Antonio, 2003. "On the computation of the aggregate claims distribution in the individual life model with bivariate dependencies," Insurance: Mathematics and Economics, Elsevier, vol. 32(2), pages 201-215, April.
    19. Hanbali, Hamza & Dhaene, Jan & Linders, Daniël, 2022. "Dependence bounds for the difference of stop-loss payoffs on the difference of two random variables," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 22-37.
    20. Cheung, Ka Chun & Yang, Hailiang, 2004. "Ordering optimal proportions in the asset allocation problem with dependent default risks," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 595-609, December.

    More about this item

    Keywords

    mutual exclusivity; stop-loss transform; tail convex order; risk measures;
    All these keywords.

    JEL classification:

    • G19 - Financial Economics - - General Financial Markets - - - Other
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ete:afiper:485580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library EBIB (email available below). General contact details of provider: https://feb.kuleuven.be/AFI .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.