IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0906.2100.html
   My bibliography  Save this paper

De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process

Author

Listed:
  • Irmina Czarna
  • Zbigniew Palmowski

Abstract

Consider two insurance companies (or two branches of the same company) that receive premiums at different rates and then split the amount they pay in fixed proportions for each claim (for simplicity we assume that they are equal). We model the occurrence of claims according to a Poisson process. The ruin is achieved when the corresponding two-dimensional risk process first leaves the positive quadrant. We will consider two scenarios of the controlled process: refraction and impulse control. In the first case the dividends are payed out when the two-dimensional risk process exits the fixed region. In the second scenario, whenever the process hits the horizontal line, it is reduced by paying dividends to some fixed point in the positive quadrant where it waits for the next claim to arrive. In both models we calculate the discounted cumulative dividend payments until the ruin. This paper is the first attempt to understand the effect of dependencies of two portfolios on the joint optimal strategy of paying dividends. For example in case of proportional reinsurance one can observe the interesting phenomenon that choice of the optimal barrier depends on the initial reserves. This is in contrast with the one-dimensional Cram\'{e}r-Lundberg model where the optimal choice of the barrier is uniform for all initial reserves.

Suggested Citation

  • Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100, arXiv.org, revised Feb 2011.
  • Handle: RePEc:arx:papers:0906.2100
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0906.2100
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abel Cadenillas & Tahir Choulli & Michael Taksar & Lei Zhang, 2006. "Classical And Impulse Stochastic Control For The Optimization Of The Dividend And Risk Policies Of An Insurance Firm," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 181-202, January.
    2. Avram, Florin & Palmowski, Zbigniew & Pistorius, Martijn, 2008. "A two-dimensional ruin problem on the positive quadrant," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 227-234, February.
    3. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    4. De Vylder, F. Etienne & Goovaerts, Marc J., 1999. "Explicit finite-time and infinite-time ruin probabilities in the continuous case," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 155-172, May.
    5. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    6. Ambagaspitiya, Rohana S., 1999. "On the distributions of two classes of correlated aggregate claims," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 301-308, May.
    7. Dhaene, J. & Goovaerts, M. J., 1997. "On the dependency of risks in the individual life model," Insurance: Mathematics and Economics, Elsevier, vol. 19(3), pages 243-253, May.
    8. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    9. Pablo Azcue & Nora Muler, 2005. "Optimal Reinsurance And Dividend Distribution Policies In The Cramér‐Lundberg Model," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 261-308, April.
    10. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    11. Hu, Taizhong & Wu, Zhiqiang, 1999. "On dependence of risks and stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 323-332, May.
    12. Denuit, M. & Genest, C. & Marceau, E., 1999. "Stochastic bounds on sums of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 85-104, September.
    13. Sundt, Bjørn, 1999. "On Multivariate Panjer Recursions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 29-45, May.
    14. Goovaerts, M. J. & Dhaene, J., 1996. "The compound Poisson approximation for a portfolio of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 18(1), pages 81-85, May.
    15. Chan, Wai-Sum & Yang, Hailiang & Zhang, Lianzeng, 2003. "Some results on ruin probabilities in a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 345-358, July.
    16. De Vylder, F. & Goovaerts, M. J., 1988. "Recursive calculation of finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 7(1), pages 1-7, January.
    17. T. Zajic, 2000. "Optimal Dividend Payout under Compound Poisson Income," Journal of Optimization Theory and Applications, Springer, vol. 104(1), pages 195-213, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mike Ludkovski, 2022. "Regression Monte Carlo for Impulse Control," Papers 2203.06539, arXiv.org.
    2. Philipp Lukas Strietzel & Henriette Elisabeth Heinrich, 2022. "Optimal Dividends for a Two-Dimensional Risk Model with Simultaneous Ruin of Both Branches," Risks, MDPI, vol. 10(6), pages 1-23, June.
    3. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    4. Albrecher, Hansjörg & Cheung, Eric C.K. & Liu, Haibo & Woo, Jae-Kyung, 2022. "A bivariate Laguerre expansions approach for joint ruin probabilities in a two-dimensional insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 96-118.
    5. Liu, Jingchen & Woo, Jae-Kyung, 2014. "Asymptotic analysis of risk quantities conditional on ruin for multidimensional heavy-tailed random walks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 1-9.
    6. Gong, Lan & Badescu, Andrei L. & Cheung, Eric C.K., 2012. "Recursive methods for a multi-dimensional risk process with common shocks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 109-120.
    7. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2015. "Optimal Dividend Strategies for Two Collaborating Insurance Companies," Papers 1505.03980, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    2. Chan, Wai-Sum & Yang, Hailiang & Zhang, Lianzeng, 2003. "Some results on ruin probabilities in a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 345-358, July.
    3. Denuit, Michel & Lefevre, Claude & Utev, Sergey, 2002. "Measuring the impact of dependence between claims occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 1-19, February.
    4. Anastasiadis, Simon & Chukova, Stefanka, 2012. "Multivariate insurance models: An overview," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 222-227.
    5. Cossette, Helene & Gaillardetz, Patrice & Marceau, Etienne & Rioux, Jacques, 2002. "On two dependent individual risk models," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 153-166, April.
    6. Frostig, Esther, 2006. "On risk dependence and mrl ordering," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 231-243, February.
    7. Albers, Willem, 1999. "Stop-loss premiums under dependence," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 173-185, May.
    8. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    9. Chuancun Yin & Dan Zhu, 2016. "Sharp convex bounds on the aggregate sums--An alternative proof," Papers 1603.05373, arXiv.org, revised May 2016.
    10. Chuancun Yin & Dan Zhu, 2016. "Sharp Convex Bounds on the Aggregate Sums–An Alternative Proof," Risks, MDPI, vol. 4(4), pages 1-8, September.
    11. Frostig, Esther, 2003. "Ordering ruin probabilities for dependent claim streams," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 93-114, February.
    12. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    13. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    14. Ivanovs, Jevgenijs & Boxma, Onno, 2015. "A bivariate risk model with mutual deficit coverage," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 126-134.
    15. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    16. Boxma, Onno & Frostig, Esther & Perry, David & Yosef, Rami, 2017. "A state dependent reinsurance model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 170-181.
    17. Badila, E.S. & Boxma, O.J. & Resing, J.A.C., 2015. "Two parallel insurance lines with simultaneous arrivals and risks correlated with inter-arrival times," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 48-61.
    18. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    19. Frostig, Esther, 2001. "Comparison of portfolios which depend on multivariate Bernoulli random variables with fixed marginals," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 319-332, December.
    20. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0906.2100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.