IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/4545.html
   My bibliography  Save this paper

Modified whittle estimation of multilateral models on a lattice

Author

Listed:
  • Robinson, Peter M.
  • Vidal Sanz, J.

Abstract

In the estimation of parametric models for stationary spatial or spatio-temporal data on a d-dimensional lattice, for d ≥ 2, the achievement of asymptotic efficiency under Gaussianity, and asymptotic normality more generally, with standard convergence rate, faces two obstacles. One is the "edge effect", which worsens with increasing d. The other is the possible difficulty of computing a continuous-frequency form of Whittle estimate or a time domain Gaussian maximum likelihood estimate, due mainly to the Jacobian term. This is especially a problem in "multilateral" models, which are naturally expressed in terms of lagged values in both directions for one or more of the d dimensions. An extension of the discrete-frequency Whittle estimate from the time series literature deals conveniently with the computational problem, but when subjected to a standard device for avoiding the edge effect has disastrous asymptotic performance, along with finite sample numerical drawbacks, the objective function lacking a minimum-distance interpretation and losing any global convexity properties. We overcome these problems by first optimizing a standard, guaranteed non-negative, discrete-frequency, Whittle function, without edge-effect correction, providing an estimate with a slow convergence rate, then improving this by a sequence of computationally convenient approximate Newton iterations using a modified, almost-unbiased periodogram, the desired asymptotic properties being achieved after finitely many steps. The asymptotic regime allows increase in both directions of all d dimensions, with the central limit theorem established after reordering as a triangular array. However our work offers something new for "unilateral" models also. When the data are non-Gaussian, asymptotic variances of all parameter estimates may be affected, and we propose consistent, non-negative definite estimates of the asymptotic variance matrix.

Suggested Citation

  • Robinson, Peter M. & Vidal Sanz, J., 2005. "Modified whittle estimation of multilateral models on a lattice," LSE Research Online Documents on Economics 4545, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:4545
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/4545/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ma, Chunsheng, 2004. "Spatial autoregression and related spatio-temporal models," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 152-162, January.
    2. Hannan, E. J. & Dunsmuir, W. T. M. & Deistler, M., 1980. "Estimation of vector ARMAX models," Journal of Multivariate Analysis, Elsevier, vol. 10(3), pages 275-295, September.
    3. Tran, L. T. & Yakowitz, S., 1993. "Nearest Neighbor Estimators for Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 23-46, January.
    4. Robinson, Peter M, 1988. "The Stochastic Difference between Econometric Statistics," Econometrica, Econometric Society, vol. 56(3), pages 531-548, May.
    5. Heyde, C. C. & Gay, R., 1993. "Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 45(1), pages 169-182, March.
    6. Ma, Chunsheng, 2003. "Spatio-temporal stationary covariance models," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 97-107, July.
    7. P. M. Robinson, 1987. "Time Series Residuals With Application To Probability Density Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 329-344, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Robinson & J. Vidal Sanz Vidal Sanz, 2003. "Modified whittle estimation of multilateral spatial models," CeMMAP working papers CWP18/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Peter Robinson & J. Vidal Sanz Vidal Sanz, 2003. "Modified whittle estimation of multilateral spatial models," CeMMAP working papers 18/03, Institute for Fiscal Studies.
    3. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    4. Lu, Zudi & Chen, Xing, 2004. "Spatial kernel regression estimation: weak consistency," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 125-136, June.
    5. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    6. J. H. Wright, 1995. "Stochastic Orders Of Magnitude Associated With Two‐Stage Estimators Of Fractional Arima Systems," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(1), pages 119-125, January.
    7. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    8. Sandra De Iaco, 2010. "Space-time correlation analysis: a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 1027-1041.
    9. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    10. Yong Bao, 2018. "The asymptotic covariance matrix of the QMLE in ARMA models," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 309-324, April.
    11. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
    12. M. Deistler & B. Pötscher & J. Schrader, 1984. "The uniqueness of the transfer function of linear systems from input-output observations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 31(1), pages 157-181, December.
    13. Abdelhamid Ouakasse & Guy Mélard, 2017. "A New Recursive Estimation Method for Single Input Single Output Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 417-457, May.
    14. Ma, Chunsheng, 2004. "Spatial autoregression and related spatio-temporal models," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 152-162, January.
    15. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11979, University Library of Munich, Germany, revised Jul 2005.
    16. Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
    17. Pierre Duchesne, 2005. "On the asymptotic distribution of residual autocovariances in VARX models with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 449-473, December.
    18. Jeffrey M. Wooldridge, 2004. "Estimating average partial effects under conditional moment independence assumptions," CeMMAP working papers CWP03/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Guang Cheng, 2013. "How Many Iterations are Sufficient for Efficient Semiparametric Estimation?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 592-618, September.
    20. Tsung-Lin Cheng & Hwai-Chung Ho & Xuewen Lu, 2008. "A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z 2," Journal of Theoretical Probability, Springer, vol. 21(2), pages 267-286, June.

    More about this item

    Keywords

    Spatial data; multilateral modelling; Whittle estimation; Edge effect; consistent variance estimation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:4545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.