IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/51536.html
   My bibliography  Save this paper

Modeling and Design of Container Terminal Operations

Author

Listed:
  • Roy, D.
  • de Koster, M.B.M.

Abstract

Design of container terminal operations is complex because multiple factors affect the operational perfor- mance. These factors include: topological constraints, a large number of design parameters and settings, and stochastic interactions that interplay among the quayside, vehicle transport, and stackside processes. In this research, we propose new integrated queuing network models for rapid design evaluation of container terminals with Automated Lift Vehicles (ALVs) and Automated Guided Vehicles (AGVs). These models offer the flexibility to analyze alternate design variations and develop insights. For instance, the effect of alternate vehicle dwell point policy is analyzed using state-dependent queues, whereas the efficient terminal layout is determined using variation in the service time expressions at the stations. Further, using embedded Markov chain analysis, we develop an approximate procedure for analyzing bulk container arrivals. These models form the building block for design and analysis of large-scale terminal operations. We test the model efficacy using detailed in-house simulation experiments and real-terminal validation by partnering with an external party.

Suggested Citation

  • Roy, D. & de Koster, M.B.M., 2014. "Modeling and Design of Container Terminal Operations," ERIM Report Series Research in Management ERS-2014-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:51536
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/51536/ERS-2014-008-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petering, Matthew E.H., 2011. "Decision support for yard capacity, fleet composition, truck substitutability, and scalability issues at seaport container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(1), pages 85-103, January.
    2. Iris F. A. Vis & Hector J. Carlo, 2010. "Sequencing Two Cooperating Automated Stacking Cranes in a Container Terminal," Transportation Science, INFORMS, vol. 44(2), pages 169-182, May.
    3. Iris F. A. Vis & Kees Jan Roodbergen, 2009. "Scheduling of Container Storage and Retrieval," Operations Research, INFORMS, vol. 57(2), pages 456-467, April.
    4. Bart W Wiegmans & Barry Ubbels & Piet Rietveld & Peter Nijkamp, 2002. "Investments in Container Terminals: Public Private Partnerships in Europe," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 4(1), pages 1-20, March.
    5. van den Berg, Jeroen P., 2002. "Analytic expressions for the optimal dwell point in an automated storage/retrieval system," International Journal of Production Economics, Elsevier, vol. 76(1), pages 13-25, March.
    6. Wiegmans, Bart W. & Ubbels, B. & Rietveld, P., 2002. "Investments in container terminals: public private partnerships," Serie Research Memoranda 0003, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    7. Frank Meisel & Christian Bierwirth, 2013. "A Framework for Integrated Berth Allocation and Crane Operations Planning in Seaport Container Terminals," Transportation Science, INFORMS, vol. 47(2), pages 131-147, May.
    8. Ng, W. C., 2005. "Crane scheduling in container yards with inter-crane interference," European Journal of Operational Research, Elsevier, vol. 164(1), pages 64-78, July.
    9. Easa, Said M., 1987. "Approximate queueing models for analyzing harbor terminal operations," Transportation Research Part B: Methodological, Elsevier, vol. 21(4), pages 269-286, August.
    10. Ernest Koenigsberg & Richard C. Lam, 1976. "Cyclic Queue Models of Fleet Operations," Operations Research, INFORMS, vol. 24(3), pages 516-529, June.
    11. Changqian Guan & Rongfang (Rachel) Liu, 2009. "Container terminal gate appointment system optimization," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(4), pages 378-398, December.
    12. Evangelos Mennis & Agapios Platis & Ioannis Lagoudis & Nikitas Nikitakos, 2008. "Improving Port Container Terminal Efficiency with the use of Markov Theory," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(3), pages 243-257, September.
    13. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    14. Branislav Dragović & Nam Kyu Park & Zoran Radmilović, 2006. "Ship-berth link performance evaluation: simulation and analytical approaches," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(3), pages 281-299, July.
    15. Tijms, H.C., 1988. "Algorithms and approximations for batch-arrival queues," Serie Research Memoranda 0009, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    16. Ilaria Vacca & Matteo Salani & Michel Bierlaire, 2013. "An Exact Algorithm for the Integrated Planning of Berth Allocation and Quay Crane Assignment," Transportation Science, INFORMS, vol. 47(2), pages 148-161, May.
    17. Mark B. Duinkerken & Rommert Dekker & Stef T. G. L. Kurstjens & Jaap A. Ottjes & Nico P. Dellaert, 2007. "Comparing transportation systems for inter-terminal transport at the Maasvlakte container terminals," Springer Books, in: Kap Hwan Kim & Hans-Otto Günther (ed.), Container Terminals and Cargo Systems, pages 37-61, Springer.
    18. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    19. Li, Wenkai & Wu, Yong & Petering, M.E.H. & Goh, Mark & Souza, Robert de, 2009. "Discrete time model and algorithms for container yard crane scheduling," European Journal of Operational Research, Elsevier, vol. 198(1), pages 165-172, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vibhuti Dhingra & Debjit Roy & René B. M. Koster, 2017. "A cooperative quay crane-based stochastic model to estimate vessel handling time," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 97-124, March.
    2. Debjit Roy & Akash Gupta & René B.M. De Koster, 2016. "A non-linear traffic flow-based queuing model to estimate container terminal throughput with AGVs," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 472-493, January.
    3. Kumawat, Govind Lal & Roy, Debjit & De Koster, René & Adan, Ivo, 2021. "Stochastic modeling of parallel process flows in intra-logistics systems: Applications in container terminals and compact storage systems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 159-176.
    4. Barenji, Ali Vatankhah & Wang, W.M. & Li, Zhi & Guerra-Zubiaga, David A., 2019. "Intelligent E-commerce logistics platform using hybrid agent based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 15-31.
    5. Egor PLOTNIKOV & Aleksandr RAKHMANGULOV, 2021. "Modeling China'S Dry Port Cooperation In Supply Chains," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(3), pages 89-103, September.
    6. Dmitri Muravev & Aleksandr Rakhmangulov & Hao Hu & Hengshuo Zhou, 2019. "The Introduction to System Dynamics Approach to Operational Efficiency and Sustainability of Dry Port’s Main Parameters," Sustainability, MDPI, vol. 11(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debjit Roy & René De Koster & René Bekker, 2020. "Modeling and Design of Container Terminal Operations," Operations Research, INFORMS, vol. 68(3), pages 686-715, May.
    2. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    4. Roy, D. & Gupta, A. & Parhi, S. & de Koster, M.B.M., 2014. "Optimal Stack Layout in a Sea Container Terminal with Automated Lifting Vehicles," ERIM Report Series Research in Management ERS-2014-012-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
    6. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    7. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    8. Jenny Nossack & Dirk Briskorn & Erwin Pesch, 2018. "Container Dispatching and Conflict-Free Yard Crane Routing in an Automated Container Terminal," Transportation Science, INFORMS, vol. 52(5), pages 1059-1076, October.
    9. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    10. Vibhuti Dhingra & Debjit Roy & René B. M. Koster, 2017. "A cooperative quay crane-based stochastic model to estimate vessel handling time," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 97-124, March.
    11. Branislav Dragovic & Nenad Dj. Zrnic, 2011. "A Queuing Model Study of Port Performance Evolution," Analele Universitatii "Eftimie Murgu" Resita Fascicola de Inginerie, "Eftimie Murgu" University of Resita, vol. 2(XVIII), pages 65-76, December.
    12. Lashkari, Shabnam & Wu, Yong & Petering, Matthew E.H., 2017. "Sequencing dual-spreader crane operations: Mathematical formulation and heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 262(2), pages 521-534.
    13. Xin Jia Jiang & Yanhua Xu & Chenhao Zhou & Ek Peng Chew & Loo Hay Lee, 2018. "Frame Trolley Dispatching Algorithm for the Frame Bridge Based Automated Container Terminal," Transportation Science, INFORMS, vol. 52(3), pages 722-737, June.
    14. Sumin Chen & Qingcheng Zeng & Yushan Hu, 2022. "Scheduling optimization for two crossover automated stacking cranes considering relocation," Operational Research, Springer, vol. 22(3), pages 2099-2120, July.
    15. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    16. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    17. Yong Wu & Wenkai Li & Matthew E. H. Petering & Mark Goh & Robert de Souza, 2015. "Scheduling Multiple Yard Cranes with Crane Interference and Safety Distance Requirement," Transportation Science, INFORMS, vol. 49(4), pages 990-1005, November.
    18. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    19. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    20. Roy, D. & de Koster, M.B.M., 2015. "Stochastic Modeling of Unloading and Loading Operations at a Container Terminal using Automated Lifting Vehicles," ERIM Report Series Research in Management ERS-2015-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    More about this item

    Keywords

    container terminal; intra-terminal transport; design decisions; queuing models;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:51536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.