IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/13180.html
   My bibliography  Save this paper

Including Item Characteristics in the Probabilistic Latent Semantic Analysis Model for Collaborative Filtering

Author

Listed:
  • Kagie, M.
  • van der Loos, M.J.H.M.
  • van Wezel, M.C.

Abstract

We propose a new hybrid recommender system that combines some advantages of collaborative and content-based recommender systems. While it uses ratings data of all users, as do collaborative recommender systems, it is also able to recommend new items and provide an explanation of its recommendations, as do content-based systems. Our approach is based on the idea that there are communities of users that find the same characteristics important to like or dislike a product. This model is an extension of the probabilistic latent semantic model for collaborative filtering with ideas based on clusterwise linear regression. On a movie data set, we show that the model is competitive to other recommenders and can be used to explain the recommendations to the users.

Suggested Citation

  • Kagie, M. & van der Loos, M.J.H.M. & van Wezel, M.C., 2008. "Including Item Characteristics in the Probabilistic Latent Semantic Analysis Model for Collaborative Filtering," ERIM Report Series Research in Management ERS-2008-053-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:13180
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/13180/ERS-2008-053-MKT.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    2. David F. Larcker & Scott A. Richardson, 2004. "Fees Paid to Audit Firms, Accrual Choices, and Corporate Governance," Journal of Accounting Research, Wiley Blackwell, vol. 42(3), pages 625-658, June.
    3. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    4. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    5. Pennings, Joost M. E. & Garcia, Philip, 2004. "Hedging behavior in small and medium-sized enterprises: The role of unobserved heterogeneity," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 951-978, May.
    6. Wayne S. DeSarbo & C. Anthony Di Benedetto & Michael Song & Indrajit Sinha, 2005. "Revisiting the Miles and Snow strategic framework: uncovering interrelationships between strategic types, capabilities, environmental uncertainty, and firm performance," Strategic Management Journal, Wiley Blackwell, vol. 26(1), pages 47-74, January.
    7. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bipul Kumar & Pradip Kumar Bala, 2020. "Cosine based latent factor model for ranking the recommendation," Operational Research, Springer, vol. 20(1), pages 297-317, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pennings, Joost M.E. & Garcia, Philip & Irwin, Scott H. & Good, Darrel L., 2003. "How To Group Market Participants? Heterogeneity In Hedging Behavior," 2003 Annual meeting, July 27-30, Montreal, Canada 21963, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Pennings, Joost M.E. & Garcia, Philip & Irwin, Scott H., 2011. "Accounting for Heterogeneity in Hedging Behavior: Comparing & Evaluating Grouping Methods," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114787, European Association of Agricultural Economists.
    3. Heungsun Hwang & Marc Tomiuk, 2010. "Fuzzy clusterwise quasi-likelihood generalized linear models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 255-270, December.
    4. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    5. David F. Larcker & Scott A. Richardson, 2004. "Fees Paid to Audit Firms, Accrual Choices, and Corporate Governance," Journal of Accounting Research, Wiley Blackwell, vol. 42(3), pages 625-658, June.
    6. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    7. Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
    8. Michele Battisti & Filippo Belloc & Massimo Del Gatto, 2015. "Unbundling Technology Adoption and tfp at the Firm Level: Do Intangibles Matter?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 24(2), pages 390-414, June.
    9. Chen, Cathy W.S. & Chan, Jennifer S.K. & So, Mike K.P. & Lee, Kevin K.M., 2011. "Classification in segmented regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2276-2287, July.
    10. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    11. Ana Oliveira-Brochado & Francisco Vitorino Martins, 2008. "Determining the Number of Market Segments Using an Experimental Design," FEP Working Papers 263, Universidade do Porto, Faculdade de Economia do Porto.
    12. Réal Carbonneau & Gilles Caporossi & Pierre Hansen, 2014. "Globally Optimal Clusterwise Regression By Column Generation Enhanced with Heuristics, Sequencing and Ending Subset Optimization," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 219-241, July.
    13. Larcker, David F., 2003. "Discussion of "are executive stock options associated with future earnings?"," Journal of Accounting and Economics, Elsevier, vol. 36(1-3), pages 91-103, December.
    14. Pennings, Joost M. E. & Garcia, Philip, 2004. "Hedging behavior in small and medium-sized enterprises: The role of unobserved heterogeneity," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 951-978, May.
    15. Teague R. Henry & Kathleen M. Gates & Mitchell J. Prinstein & Douglas Steinley, 2020. "Modeling Heterogeneous Peer Assortment Effects Using Finite Mixture Exponential Random Graph Models," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 8-34, March.
    16. Tom Frans Wilderjans & Eva Gaer & Henk A. L. Kiers & Iven Mechelen & Eva Ceulemans, 2017. "Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 86-111, March.
    17. repec:jss:jstsof:11:i08 is not listed on IDEAS
    18. Allen, Eric J. & Larson, Chad R. & Sloan, Richard G., 2013. "Accrual reversals, earnings and stock returns," Journal of Accounting and Economics, Elsevier, vol. 56(1), pages 113-129.
    19. Ana Oliveira-Brochado & Francisco Vitorino Martins, 2014. "Identifying Small Market Segments with Mixture Regression Models," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 4(4), pages 812-812.
    20. Alexandra Dumitrescu & Simone Santini, 2021. "Full coverage of a reader's interests in context‐based information filtering," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 1011-1027, August.
    21. Ana Oliveira-Brochado & Francisco Vitorino Martins, 2008. "Segmentação de Mercado e modelos mistura de regressão para variáveis normais," FEP Working Papers 262, Universidade do Porto, Faculdade de Economia do Porto.

    More about this item

    Keywords

    algorithms; hybrid recommender systems; probabilistic latent semantic analysis; recommender systems;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:13180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.