IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v72y2021i8p1011-1027.html
   My bibliography  Save this article

Full coverage of a reader's interests in context‐based information filtering

Author

Listed:
  • Alexandra Dumitrescu
  • Simone Santini

Abstract

We present a collection of algorithms to filter a stream of documents in such a way that the filtered documents will cover as well as possible the interest of a person, keeping in mind that, at any given time, the offered documents should not only be relevant, but should also be diversified, in the sense of covering all the interests of the person. We use a modification of the WEBSOM algorithm to create a user model based on a self‐organizing network trained using a collection of documents representative of the person's interests. We introduce the concepts of freshness and coverage. A document is fresh if it belongs to a semantic area of interest to a person for which no documents were seen in the recent past; a group of documents has coverage to the extent to which it is a good representation of all the interests of a person. Our tests show that these algorithms can effectively increase the coverage of the documents that are shown to the user without overly affecting precision.

Suggested Citation

  • Alexandra Dumitrescu & Simone Santini, 2021. "Full coverage of a reader's interests in context‐based information filtering," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 1011-1027, August.
  • Handle: RePEc:bla:jinfst:v:72:y:2021:i:8:p:1011-1027
    DOI: 10.1002/asi.24470
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.24470
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.24470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. E. Robertson & K. Sparck Jones, 1976. "Relevance weighting of search terms," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(3), pages 129-146, May.
    2. Yunjie (Calvin) Xu & Zhiwei Chen, 2006. "Relevance judgment: What do information users consider beyond topicality?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(7), pages 961-973, May.
    3. Stefano Mizzaro, 1997. "Relevance: The whole history," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 48(9), pages 810-832, September.
    4. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    5. Yunjie Xu & Hainan Yin, 2008. "Novelty and topicality in interactive information retrieval," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(2), pages 201-215, January.
    6. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kagie, M. & van der Loos, M.J.H.M. & van Wezel, M.C., 2008. "Including Item Characteristics in the Probabilistic Latent Semantic Analysis Model for Collaborative Filtering," ERIM Report Series Research in Management ERS-2008-053-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Jingfei Li & Peng Zhang & Dawei Song & Yue Wu, 2017. "Understanding an enriched multidimensional user relevance model by analyzing query logs," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(12), pages 2743-2754, December.
    3. Meen Chul Kim & Chaomei Chen, 2015. "A scientometric review of emerging trends and new developments in recommendation systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 239-263, July.
    4. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    5. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    6. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    7. Knox, George & Datta, Hannes, 2020. "Streaming Services and the Homogenization of Music Consumption," Other publications TiSEM 0e4d6202-dcc5-4834-ba93-a, Tilburg University, School of Economics and Management.
    8. Dimitrov, Kiril, 2012. "Natural analogies among organizational culture models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(1), pages 99-125.
    9. Fanjuan Shi & Jean-Luc Marini, 2014. "Do we need to believe Data/Tangible or Emotional/Intuition?," Post-Print halshs-01065283, HAL.
    10. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    11. Wayne de Fremery & Michael K. Buckland, 2022. "Context, relevance, and labor," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(9), pages 1268-1278, September.
    12. Oana TUGULEA, 2015. "Different Web Credibility Assessment As A Result Of One Year Difference In Education. A Study On The Dimensions Of Credibility Of Commercial Presentation Websites," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 16, pages 117-133, December.
    13. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    14. Perkmann, Markus & Salandra, Rossella & Tartari, Valentina & McKelvey, Maureen & Hughes, Alan, 2021. "Academic engagement: A review of the literature 2011-2019," Research Policy, Elsevier, vol. 50(1).
    15. Mingxi Zhang & Pohan Li & Wei Wang, 2017. "An index-based algorithm for fast on-line query processing of latent semantic analysis," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    16. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    17. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    18. Yan Chen & F. Maxwell Harper & Joseph Konstan & Sherry Xin Li, 2010. "Social Comparisons and Contributions to Online Communities: A Field Experiment on MovieLens," American Economic Review, American Economic Association, vol. 100(4), pages 1358-1398, September.
    19. Ian Ruthven, 2021. "Resonance and the experience of relevance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(5), pages 554-569, May.
    20. Joanna Sokolowska & Patrycja Sleboda, 2015. "The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1252-1267, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:72:y:2021:i:8:p:1011-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.