IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/10594.html
   My bibliography  Save this paper

Detecting and Forecasting Economic Regimes in Multi-Agent Automated Exchanges

Author

Listed:
  • Ketter, W.
  • Collins, J.
  • Gini, M.
  • Gupta, A.
  • Schrater, P.

Abstract

We show how an autonomous agent can use observable market conditions to characterize the microeconomic situation of the market and predict future market trends. The agent can use this information to make both tactical decisions, such as pricing, and strategic decisions, such as product mix and production planning. We develop methods to learn dominant market conditions, such as over-supply or scarcity, from historical data using Gaussian mixture models to construct price density functions. We discuss how this model can be combined with real-time observable information to identify the current dominant market condition and to forecast market changes over a planning horizon. We forecast market changes via both a Markov correction-prediction process and an exponential smoother. Empirical analysis shows that the exponential smoother yields more accurate predictions for the current and the next day (supporting tactical decisions), while the Markov correction-prediction process is better for longer term predictions (supporting strategic decisions). Our approach offers more flexibility than traditional regression based approaches, since it does not assume a fixed functional relationship between dependent and independent variables. We validate our methods by presenting experimental results in a case study, the Trading Agent Competition for Supply Chain Management.

Suggested Citation

  • Ketter, W. & Collins, J. & Gini, M. & Gupta, A. & Schrater, P., 2007. "Detecting and Forecasting Economic Regimes in Multi-Agent Automated Exchanges," ERIM Report Series Research in Management ERS-2007-065-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:10594
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/10594/ERS-2007-065-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert G. Brown & Richard F. Meyer, 1961. "The Fundamental Theorem of Exponential Smoothing," Operations Research, INFORMS, vol. 9(5), pages 673-685, October.
    2. Anindya Ghose & Michael D. Smith & Rahul Telang, 2006. "Internet Exchanges for Used Books: An Empirical Analysis of Product Cannibalization and Welfare Impact," Information Systems Research, INFORMS, vol. 17(1), pages 3-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolfgang Ketter & John Collins & Maria Gini & Alok Gupta & Paul Schrater, 2012. "Real-Time Tactical and Strategic Sales Management for Intelligent Agents Guided by Economic Regimes," Information Systems Research, INFORMS, vol. 23(4), pages 1263-1283, December.
    2. Ketter, W. & Collins, J. & Gini, M. & Gupta, A. & Schrater, P., 2008. "Tactical and Strategic Sales Management for Intelligent Agents Guided By Economic Regimes," ERIM Report Series Research in Management ERS-2008-061-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Mohamed Elhefnawy & Ahmed Ragab & Mohamed-Salah Ouali, 2023. "Polygon generation and video-to-video translation for time-series prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 261-279, January.
    4. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    5. Ramani, Vinay & De Giovanni, Pietro, 2017. "A two-period model of product cannibalization in an atypical Closed-loop Supply Chain with endogenous returns: The case of DellReconnect," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1009-1027.
    6. John Jeansson & Shahrokh Nikou & Siw Lundqvist & Leif Marcusson & Anna Sell & Pirkko Walden, 2017. "SMEs’ online channel expansion: value creating activities," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(1), pages 49-66, February.
    7. Edlira Shehu & Tim Prostka & Christina Schmidt-Stölting & Michel Clement & Eva Blömeke, 2014. "The influence of book advertising on sales in the German fiction book market," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 38(2), pages 109-130, May.
    8. Rubing Li & Arun Sundararajan, 2024. "The Rise of Recommerce: Ownership and Sustainability with Overlapping Generations," Papers 2405.09023, arXiv.org.
    9. Christophe Bellégo & Romain De Nijs, 2020. "The Unintended Consequences of Antipiracy Laws on Markets with Asymmetric Piracy: The Case of the French Movie Industry," Information Systems Research, INFORMS, vol. 31(4), pages 1064-1086, December.
    10. Zhiyi Wang & Lusi Yang & Jungpil Hahn, 2023. "Winner Takes All? The Blockbuster Effect on Crowdfunding Platforms," Information Systems Research, INFORMS, vol. 34(3), pages 935-960, September.
    11. Anindya Ghose & Sang Pil Han, 2014. "Estimating Demand for Mobile Applications in the New Economy," Management Science, INFORMS, vol. 60(6), pages 1470-1488, June.
    12. Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
    13. Rapson, David & Schiraldi, Pasquale, 2013. "Internet and the efficiency of decentralized markets: Evidence from automobiles," Economics Letters, Elsevier, vol. 121(2), pages 232-235.
    14. Stephanie Yang & Hsueh-Chih Chen & Wen-Ching Chen & Cheng-Hong Yang, 2020. "Forecasting outbound student mobility: A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    15. James D. Dana Jr. & Eugene Orlov Jr., 2014. "Internet Penetration and Capacity Utilization in the US Airline Industry," American Economic Journal: Microeconomics, American Economic Association, vol. 6(4), pages 106-137, November.
    16. Michael R. Baye & J. Rupert J. Gatti & Paul Kattuman & John Morgan, 2009. "Clicks, Discontinuities, and Firm Demand Online," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 18(4), pages 935-975, December.
    17. Steve Thompson, 2009. "Grey Power: An Empirical Investigation of the Impact of Parallel Imports on Market Prices," Journal of Industry, Competition and Trade, Springer, vol. 9(3), pages 219-232, September.
    18. Raharjo, Hendry & Xie, Min & Brombacher, Aarnout C., 2009. "On modeling dynamic priorities in the analytic hierarchy process using compositional data analysis," European Journal of Operational Research, Elsevier, vol. 194(3), pages 834-846, May.
    19. Chux Gervase Iwu, 2011. "Used Bookstore as a Vehicle for Improved Learning and Development: The Case of a South African Tertiary Institution," Journal of Education and Vocational Research, AMH International, vol. 1(3), pages 87-95.
    20. Antino Kim & Rajib L. Saha & Warut Khern-am-nuai, 2021. "Manufacturer’s “1-Up” from Used Games: Insights from the Secondhand Market for Video Games," Information Systems Research, INFORMS, vol. 32(4), pages 1173-1191, December.

    More about this item

    Keywords

    Trading agents; dynamic pricing; machine learning; market forecasting;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • L15 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Information and Product Quality
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:10594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.