IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/79920.html
   My bibliography  Save this paper

Spare part demand forecasting for consumer goods using installed base information

Author

Listed:
  • Kim, T.Y.
  • Dekker, R.
  • Heij, C.

Abstract

When stopping production, the manufacturer has to decide on the lot size in the final production run to cover spare part demand during the end-of-life phase. This decision can be supported by forecasting how much demand is expected in the future. Forecasts can be obtained from the installed base of the product, that is, the number of products still in use. Consumer decisions on whether or not to repair a malfunctioning product depend on the specific product and spare part. Further, consumers may differ in their decisions, for example, for products with fast innovations and changing social trends. Consumer behavior can be accounted for by using appropriate types of installed base, for example, full installed base for cheap but essential spare parts of expensive products, and warranty installed base for expensive spare parts of products with short lifecycle. The paper presents a general methodology for installed base forecasting of end-of-life spare part demand and formulates research hypotheses on which of four installed base types performs best under which conditions. The methodology is illustrated by case studies for eighteen spare parts of six products from a consumer electronics company. The research hypotheses are supported in the majority of cases, and forecasts obtained from installed base are substantially better than simple black box forecasts. Incorporating past sales via installed base supports final production decisions to satisfy future consumer demand for spare parts.

Suggested Citation

  • Kim, T.Y. & Dekker, R. & Heij, C., 2016. "Spare part demand forecasting for consumer goods using installed base information," Econometric Institute Research Papers EI2016-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:79920
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/79920/EI2016-11.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lengu, D. & Syntetos, A.A. & Babai, M.Z., 2014. "Spare parts management: Linking distributional assumptions to demand classification," European Journal of Operational Research, Elsevier, vol. 235(3), pages 624-635.
    2. Yamashina, H., 1989. "The service parts control problem," Engineering Costs and Production Economics, Elsevier, vol. 16(3), pages 195-208, June.
    3. Pinçe, Çerag & Dekker, Rommert, 2011. "An inventory model for slow moving items subject to obsolescence," European Journal of Operational Research, Elsevier, vol. 213(1), pages 83-95, August.
    4. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    5. Teunter, Ruud H. & Fortuin, Leonard, 1998. "End-of-life service: A case study," European Journal of Operational Research, Elsevier, vol. 107(1), pages 19-34, May.
    6. Karl Inderfurth & Kampan Mukherjee, 2008. "Decision support for spare parts acquisition in post product life cycle," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(1), pages 17-42, March.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. van der Heijden, Matthieu & Iskandar, Bermawi P., 2013. "Last time buy decisions for products sold under warranty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 302-312.
    9. Jin, Tongdan & Tian, Yu, 2012. "Optimizing reliability and service parts logistics for a time-varying installed base," European Journal of Operational Research, Elsevier, vol. 218(1), pages 152-162.
    10. Romeijnders, Ward & Teunter, Ruud & van Jaarsveld, Willem, 2012. "A two-step method for forecasting spare parts demand using information on component repairs," European Journal of Operational Research, Elsevier, vol. 220(2), pages 386-393.
    11. Islam, Towhidul & Meade, Nigel, 2000. "Modelling diffusion and replacement," European Journal of Operational Research, Elsevier, vol. 125(3), pages 551-570, September.
    12. Dekker, Rommert & Pinçe, Çerağ & Zuidwijk, Rob & Jalil, Muhammad Naiman, 2013. "On the use of installed base information for spare parts logistics: A review of ideas and industry practice," International Journal of Production Economics, Elsevier, vol. 143(2), pages 536-545.
    13. Kim, Bowon & Park, Sangsun, 2008. "Optimal pricing, EOL (end of life) warranty, and spare parts manufacturing strategy amid product transition," European Journal of Operational Research, Elsevier, vol. 188(3), pages 723-745, August.
    14. Bacchetti, Andrea & Saccani, Nicola, 2012. "Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice," Omega, Elsevier, vol. 40(6), pages 722-737.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    2. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    3. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    4. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    7. Van der Auweraer, Sarah & Boute, Robert, 2019. "Forecasting spare part demand using service maintenance information," International Journal of Production Economics, Elsevier, vol. 213(C), pages 138-149.
    8. Van der Auweraer, Sarah & Zhu, Sha & Boute, Robert N., 2021. "The value of installed base information for spare part inventory control," International Journal of Production Economics, Elsevier, vol. 239(C).
    9. Ozyoruk, Emin & Erkip, Nesim Kohen & Ararat, Çağın, 2022. "End-of-life inventory management problem: Results and insights," International Journal of Production Economics, Elsevier, vol. 243(C).
    10. Boram Choi & Jong Hwan Suh, 2020. "Forecasting Spare Parts Demand of Military Aircraft: Comparisons of Data Mining Techniques and Managerial Features from the Case of South Korea," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    11. Prak, Dennis & Teunter, Ruud & Babai, Mohamed Zied & Boylan, John E. & Syntetos, Aris, 2021. "Robust compound Poisson parameter estimation for inventory control," Omega, Elsevier, vol. 104(C).
    12. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
    13. Zhu, Sha & Jaarsveld, Willem van & Dekker, Rommert, 2020. "Spare parts inventory control based on maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Hekimoğlu, Mustafa & Karlı, Deniz, 2023. "Modeling repair demand in existence of a nonstationary installed base," International Journal of Production Economics, Elsevier, vol. 263(C).
    15. Wenhan Fu & Sheng Jing & Qinming Liu & Hao Zhang, 2023. "Resilient Supply Chain Framework for Semiconductor Distribution and an Empirical Study of Demand Risk Inference," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    16. Shi, Zhenyang & Liu, Shaoxuan, 2020. "Optimal inventory control and design refresh selection in managing part obsolescence," European Journal of Operational Research, Elsevier, vol. 287(1), pages 133-144.
    17. Prak, Dennis & Rogetzer, Patricia, 2022. "Timing intermittent demand with time-varying order-up-to levels," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1126-1136.
    18. Rainer Kleber & Tobias Schulz & Guido Voigt, 2009. "Dynamic buy-back for product recovery in end-of-life spare parts procurement," FEMM Working Papers 09026, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    19. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    20. Behfard, S. & van der Heijden, M.C. & Al Hanbali, A. & Zijm, W.H.M., 2015. "Last time buy and repair decisions for spare parts," European Journal of Operational Research, Elsevier, vol. 244(2), pages 498-510.

    More about this item

    Keywords

    Installed base forecast; end-of-life service; decision support; consumer goods; spare parts;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:79920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.