IDEAS home Printed from https://ideas.repec.org/p/ema/worpap/2020-16.html
   My bibliography  Save this paper

Deegan-Packel & Johnston spatial power indices and characterizations

Author

Listed:
  • Arnold Cédrick SOH VOUTSA

    (Université de Cergy-Pontoise, THEMA)

Abstract

In this paper, we propose two spatial power indices in political games, taking into account ideological preferences of players. To do this, we develop an explanatory spatial model linked to the asymmetry Deegan-Pakel index introduced by Rapoport & Golan [Rapoport, A., Golan, E., 1985. Assessment of political power in the israeli knesset. American Political Science Review 79 (3), 673-692], which is the original Deegan-Packel index readjusted for measuring power according to the spatial preferences of players in real political games. In addition to extending such a readjustment for the original John- ston index | transforming it concomitantly into the Johnston spatial power index | this paper presents both the general versions of these two spatial indices, and their axiomatic characterizations through new axioms such as the vetoer property and others mainly in- spired from Lorenzo-Freire et al. [Lorenzo-Freire, S., Alonso-Meijide, J. M., Casas-Mendez, B., Fiestras-Janeiro, M. G., 2007. Characterizations of the Deegan-Packel and johnston power indices. European Journal of Operational Research 177 (1), 431-444].

Suggested Citation

  • Arnold Cédrick SOH VOUTSA, 2020. "Deegan-Packel & Johnston spatial power indices and characterizations," THEMA Working Papers 2020-16, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  • Handle: RePEc:ema:worpap:2020-16
    as

    Download full text from publisher

    File URL: http://thema.u-cergy.fr/IMG/pdf/2020-16.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lorenzo-Freire, S. & Alonso-Meijide, J.M. & Casas-Mendez, B. & Fiestras-Janeiro, M.G., 2007. "Characterizations of the Deegan-Packel and Johnston power indices," European Journal of Operational Research, Elsevier, vol. 177(1), pages 431-444, February.
    2. Owen, G & Shapley, L S, 1989. "Optimal Location of Candidates in Ideological Space," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(3), pages 339-356.
    3. R J Johnston, 1978. "On the Measurement of Power: Some Reactions to Laver," Environment and Planning A, , vol. 10(8), pages 907-914, August.
    4. Enelow,James M. & Hinich,Melvin J., 1984. "The Spatial Theory of Voting," Cambridge Books, Cambridge University Press, number 9780521275156, January.
    5. Martin, Mathieu & Nganmeni, Zephirin & Tchantcho, Bertrand, 2017. "The Owen and Shapley spatial power indices: A comparison and a generalization," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 10-19.
    6. Dominique Lepelley & N. Andjiga & F. Chantreuil, 2003. "La mesure du pouvoir de vote," Post-Print halshs-00069255, HAL.
    7. Philip Straffin, 1977. "Homogeneity, independence, and power indices," Public Choice, Springer, vol. 30(1), pages 107-118, June.
    8. Francesco Passarelli & Jason Barr, 2007. "Preferences, the Agenda Setter, and the Distribution of Power in the EU," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(1), pages 41-60, January.
    9. Rapoport, Amnon & Golan, Esther, 1985. "Assessment of Political Power in the Israeli Knesset," American Political Science Review, Cambridge University Press, vol. 79(3), pages 673-692, September.
    10. Dan S. Felsenthal & Moshé Machover, 1998. "The Measurement of Voting Power," Books, Edward Elgar Publishing, number 1489.
    11. Stefano Benati & Giuseppe Vittucci Marzetti, 2013. "Probabilistic spatial power indexes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(2), pages 391-410, February.
    12. Shenoy, Prakash P., 1982. "The Banzhaf power index for political games," Mathematical Social Sciences, Elsevier, vol. 2(3), pages 299-315, April.
    13. Hans Peters & José M. Zarzuelo, 2017. "An axiomatic characterization of the Owen–Shapley spatial power index," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 525-545, May.
    14. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albizuri, M.J. & Goikoetxea, A., 2022. "Probabilistic Owen-Shapley spatial power indices," Games and Economic Behavior, Elsevier, vol. 136(C), pages 524-541.
    2. Qianqian Kong & Hans Peters, 2021. "An issue based power index," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 23-38, March.
    3. Martin, Mathieu & Nganmeni, Zephirin & Tchantcho, Bertrand, 2017. "The Owen and Shapley spatial power indices: A comparison and a generalization," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 10-19.
    4. Arnold Cédrick SOH VOUTSA, 2021. "The Public Good spatial power index in political games," THEMA Working Papers 2021-01, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    5. Philip D. Grech, 2021. "Power in the Council of the EU: organizing theory, a new index, and Brexit," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(2), pages 223-258, February.
    6. M. J. Albizuri & A. Goikoetxea, 2021. "The Owen–Shapley Spatial Power Index in Three-Dimensional Space," Group Decision and Negotiation, Springer, vol. 30(5), pages 1027-1055, October.
    7. Hans Peters & José M. Zarzuelo, 2017. "An axiomatic characterization of the Owen–Shapley spatial power index," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 525-545, May.
    8. Barry O'neill, 1996. "Power and Satisfaction in the United Nations Security Council," Journal of Conflict Resolution, Peace Science Society (International), vol. 40(2), pages 219-237, June.
    9. Barua, Rana & Chakravarty, Satya R. & Roy, Sonali & Sarkar, Palash, 2004. "A characterization and some properties of the Banzhaf-Coleman-Dubey-Shapley sensitivity index," Games and Economic Behavior, Elsevier, vol. 49(1), pages 31-48, October.
    10. Stefano Benati & Giuseppe Vittucci Marzetti, 2021. "Voting power on a graph connected political space with an application to decision-making in the Council of the European Union," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(4), pages 733-761, November.
    11. Álvarez-Mozos, Mikel & Hellman, Ziv & Winter, Eyal, 2013. "Spectrum value for coalitional games," Games and Economic Behavior, Elsevier, vol. 82(C), pages 132-142.
    12. Berghammer, Rudolf & Bolus, Stefan & Rusinowska, Agnieszka & de Swart, Harrie, 2011. "A relation-algebraic approach to simple games," European Journal of Operational Research, Elsevier, vol. 210(1), pages 68-80, April.
    13. Di Giannatale, Paolo & Passarelli, Francesco, 2013. "Voting chances instead of voting weights," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 164-173.
    14. J. M. Alonso-Meijide & M. Álvarez-Mozos & M. G. Fiestras-Janeiro, 2017. "Power Indices and Minimal Winning Coalitions for Simple Games in Partition Function Form," Group Decision and Negotiation, Springer, vol. 26(6), pages 1231-1245, November.
    15. Barua, Rana & Chakravarty, Satya R. & Roy, Sonali, 2006. "On the Coleman indices of voting power," European Journal of Operational Research, Elsevier, vol. 171(1), pages 273-289, May.
    16. Barr, Jason & Passarelli, Francesco, 2009. "Who has the power in the EU?," Mathematical Social Sciences, Elsevier, vol. 57(3), pages 339-366, May.
    17. Fabrice Barthélémy & Mathieu Martin, 2006. "Analyse spatiale du pouvoir de vote : application au cas de l'intercommunalité dans le département du Val d'Oise," THEMA Working Papers 2006-17, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    18. Stefano Benati & Giuseppe Vittucci Marzetti, 2013. "Probabilistic spatial power indexes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(2), pages 391-410, February.
    19. José María Alonso-Meijide & Mikel Álvarez-Mozos & María Gloria Fiestras-Janeiro, 2015. "Power Indices and Minimal Winning Coalitions in Simple Games with Externalities Abstract: We propose a generalization of simple games to situations with coalitional externalities. The main novelty of ," UB School of Economics Working Papers 2015/328, University of Barcelona School of Economics.
    20. Joseph Armel Momo Kenfack & Bertrand Tchantcho & Bill Proces Tsague, 2019. "On the ordinal equivalence of the Jonhston, Banzhaf and Shapley–Shubik power indices for voting games with abstention," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 647-671, June.

    More about this item

    Keywords

    Game theory; Spatial voting games; Deegan-Packel spatial power index; Johnston spatial power index; Axiomatic characterizations; Political games.;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ema:worpap:2020-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Marcassa (email available below). General contact details of provider: https://edirc.repec.org/data/themafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.