IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v57y2021i4d10.1007_s00355-021-01339-6.html
   My bibliography  Save this article

Voting power on a graph connected political space with an application to decision-making in the Council of the European Union

Author

Listed:
  • Stefano Benati

    (University of Trento)

  • Giuseppe Vittucci Marzetti

    (University of Milano-Bicocca)

Abstract

We analyze the problem of computing the Banzhaf and Shapley power indices for graph restricted voting games, defined in a particular class of graphs, that we called line-clique. A line-clique graph is a model of a uni-dimensional political space in which voters with the same bliss point are the connected vertices of a clique and then other arcs connect nodes of consecutive cliques. The interest to this model comes from its correspondence to the spatial voting game: a model that has been proposed and used by political analysts to understand nations’ behavior and the political outcome of the bargaining process within the EU Council. Broadly speaking, the computation of a power index of a graph restricted game is strongly #P-complete, as it includes the enumeration of all winning coalitions. Nevertheless, we show that in this special class of graph coalitions can be enumerated by dynamic programming, resulting in a pseudo-polynomial algorithm and proving that the problem only weakly #P-complete. After implementing our new algorithms and finding that they are very fast in practice, we analyze the voting behavior in the EU Council, as for this application previous research compiled a large data set concerning nations’ political positions and political outcomes. We will test whether voting power has an effect on the political outcome, more precisely, whether nations that are favored by their weight and position can influence the political outcome to their advantages. Using linear regressions, we will see that unrestricted power indices are not capable of any predictive property, but graph restricted indices are. The statistic evidence shows that the combination of voting weight and network position is a source of power that affects the political outcome to the advantage of a country.

Suggested Citation

  • Stefano Benati & Giuseppe Vittucci Marzetti, 2021. "Voting power on a graph connected political space with an application to decision-making in the Council of the European Union," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(4), pages 733-761, November.
  • Handle: RePEc:spr:sochwe:v:57:y:2021:i:4:d:10.1007_s00355-021-01339-6
    DOI: 10.1007/s00355-021-01339-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00355-021-01339-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00355-021-01339-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dennis Leech & Robert Leech, 2006. "Voting power and voting blocs," Public Choice, Springer, vol. 127(3), pages 285-303, June.
    2. Gerald Schneider & Daniel Finke & Stefanie Bailer, 2010. "Bargaining Power in the European Union: An Evaluation of Competing Game‐Theoretic Models," Political Studies, Political Studies Association, vol. 58(1), pages 85-103, February.
    3. Álvarez-Mozos, Mikel & Hellman, Ziv & Winter, Eyal, 2013. "Spectrum value for coalitional games," Games and Economic Behavior, Elsevier, vol. 82(C), pages 132-142.
    4. Martin, Mathieu & Nganmeni, Zephirin & Tchantcho, Bertrand, 2017. "The Owen and Shapley spatial power indices: A comparison and a generalization," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 10-19.
    5. Dennis Leech, 2003. "Computing Power Indices for Large Voting Games," Management Science, INFORMS, vol. 49(6), pages 831-837, June.
    6. Stefan Napel & Mika Widgrén, 2006. "The Inter-Institutional Distribution of Power in EU Codecision," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 27(1), pages 129-154, August.
    7. Tom Blockmans & Marie-Anne Guerry, 2015. "Probabilistic Spatial Power Indexes: The Impact of Issue Saliences and Distance Selection," Group Decision and Negotiation, Springer, vol. 24(4), pages 675-697, July.
    8. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    9. Alonso-Meijide, J.M. & Casas-Méndez, B. & Fiestras-Janeiro, M.G., 2015. "Computing Banzhaf–Coleman and Shapley–Shubik power indices with incompatible players," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 377-387.
    10. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    11. Moshé Machover & Dan S. Felsenthal, 2001. "The Treaty of Nice and qualified majority voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(3), pages 431-464.
    12. Stefan Napel & Mika Widgrén, 2011. "Strategic versus non-strategic voting power in the EU Council of Ministers: the consultation procedure," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(3), pages 511-541, September.
    13. Prasad, K & Kelly, J S, 1990. "NP-Completeness of Some Problems Concerning Voting Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(1), pages 1-9.
    14. Amer, Rafael & Carreras, Francese & Gimenez, Jose Miguel, 2002. "The modified Banzhaf value for games with coalition structure: an axiomatic characterization," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 45-54, January.
    15. Barr, Jason & Passarelli, Francesco, 2009. "Who has the power in the EU?," Mathematical Social Sciences, Elsevier, vol. 57(3), pages 339-366, May.
    16. Stefan Napel & Mika Widgren, 2004. "Power Measurement as Sensitivity Analysis," Journal of Theoretical Politics, , vol. 16(4), pages 517-538, October.
    17. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    18. Benati, Stefano & Rizzi, Romeo & Tovey, Craig, 2015. "The complexity of power indexes with graph restricted coalitions," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 53-63.
    19. Michela Chessa & Vito Fragnelli, 2011. "Embedding Classical Indices in the FP Family," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 5(3), pages 289-305, November.
    20. Stefan Napel & Mika Widgrén, 2005. "The Possibility of a Preference-Based Power Index," Journal of Theoretical Politics, , vol. 17(3), pages 377-387, July.
    21. Baldwin, Richard & Widgren, Mika, 2004. "Winners and Losers Under Various Dual Majority Rules for the EU Council of Ministers," CEPR Discussion Papers 4450, C.E.P.R. Discussion Papers.
    22. Benati, Stefano & López-Blázquez, Fernando & Puerto, Justo, 2019. "A stochastic approach to approximate values in cooperative games," European Journal of Operational Research, Elsevier, vol. 279(1), pages 93-106.
    23. Gerald Schneider & Daniel Finke & Stefanie Bailer, 2010. "Bargaining Power in the European Union: An Evaluation of Competing Game-Theoretic Models," Political Studies, Political Studies Association, vol. 58, pages 85-103, February.
    24. J. Bilbao & J. Fernández & A. Losada & J. López, 2000. "Generating functions for computing power indices efficiently," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 191-213, December.
    25. Francesco Passarelli & Jason Barr, 2007. "Preferences, the Agenda Setter, and the Distribution of Power in the EU," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(1), pages 41-60, January.
    26. Bernard Steunenberg & Dieter Schmidtchen & Christian Koboldt, 1999. "Strategic Power in the European Union," Journal of Theoretical Politics, , vol. 11(3), pages 339-366, July.
    27. Stefano Benati & Giuseppe Vittucci Marzetti, 2013. "Probabilistic spatial power indexes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(2), pages 391-410, February.
    28. Bezalel Peleg & Peter Sudhölter, 2007. "Introduction to the Theory of Cooperative Games," Theory and Decision Library C, Springer, edition 0, number 978-3-540-72945-7, December.
    29. Alonso-Meijide, J.M. & Bilbao, J.M. & Casas-Méndez, B. & Fernández, J.R., 2009. "Weighted multiple majority games with unions: Generating functions and applications to the European Union," European Journal of Operational Research, Elsevier, vol. 198(2), pages 530-544, October.
    30. J.R. Fernández & E. Algaba & J.M. Bilbao & A. Jiménez & N. Jiménez & J.J. López, 2002. "Generating Functions for Computing the Myerson Value," Annals of Operations Research, Springer, vol. 109(1), pages 143-158, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Benati & Giuseppe Vittucci Marzetti, 2013. "Probabilistic spatial power indexes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(2), pages 391-410, February.
    2. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    3. Di Giannatale, Paolo & Passarelli, Francesco, 2013. "Voting chances instead of voting weights," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 164-173.
    4. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    5. Stefan Napel & Mika Widgrén, 2011. "Strategic versus non-strategic voting power in the EU Council of Ministers: the consultation procedure," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(3), pages 511-541, September.
    6. Benati, Stefano & Rizzi, Romeo & Tovey, Craig, 2015. "The complexity of power indexes with graph restricted coalitions," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 53-63.
    7. Widgrén, Mika, 2008. "The Impact of Council Voting Rules on EU Decision-Making," Discussion Papers 1162, The Research Institute of the Finnish Economy.
    8. Philip D. Grech, 2021. "Power in the Council of the EU: organizing theory, a new index, and Brexit," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(2), pages 223-258, February.
    9. Mika Widgrén, 2008. "The Impact of Council's Internal Decision-Making Rules on the Future EU," Discussion Papers 26, Aboa Centre for Economics.
    10. Martí Jané Ballarín, 2023. "The complexity of power indices in voting games with incompatible players," UB School of Economics Working Papers 2023/441, University of Barcelona School of Economics.
    11. Jenny Helstroffer & Marie Obidzinski, 2014. "Codecision procedure biais: the European legislation game," European Journal of Law and Economics, Springer, vol. 38(1), pages 29-46, August.
    12. Antônio Francisco Neto, 2019. "Generating Functions of Weighted Voting Games, MacMahon’s Partition Analysis, and Clifford Algebras," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 74-101, February.
    13. Antônio Francisco Neto & Carolina Rodrigues Fonseca, 2019. "An approach via generating functions to compute power indices of multiple weighted voting games with incompatible players," Annals of Operations Research, Springer, vol. 279(1), pages 221-249, August.
    14. Yuto Ushioda & Masato Tanaka & Tomomi Matsui, 2022. "Monte Carlo Methods for the Shapley–Shubik Power Index," Games, MDPI, vol. 13(3), pages 1-14, June.
    15. Nicola Maaser & Alexander Mayer, 2016. "Codecision in context: implications for the balance of power in the EU," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(1), pages 213-237, January.
    16. Albizuri, M.J. & Goikoetxea, A., 2022. "Probabilistic Owen-Shapley spatial power indices," Games and Economic Behavior, Elsevier, vol. 136(C), pages 524-541.
    17. Michela Chessa, 2014. "A generating functions approach for computing the Public Good index efficiently," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 658-673, July.
    18. Serguei Kaniovski, 2008. "The exact bias of the Banzhaf measure of power when votes are neither equiprobable nor independent," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(2), pages 281-300, August.
    19. Alonso-Meijide, J.M. & Bilbao, J.M. & Casas-Méndez, B. & Fernández, J.R., 2009. "Weighted multiple majority games with unions: Generating functions and applications to the European Union," European Journal of Operational Research, Elsevier, vol. 198(2), pages 530-544, October.
    20. Stefan Napel & Mika Widgrén, 2006. "The Inter-Institutional Distribution of Power in EU Codecision," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 27(1), pages 129-154, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:57:y:2021:i:4:d:10.1007_s00355-021-01339-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.