IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v171y2006i1p273-289.html
   My bibliography  Save this article

On the Coleman indices of voting power

Author

Listed:
  • Barua, Rana
  • Chakravarty, Satya R.
  • Roy, Sonali

Abstract

Coleman [1971. Control of collectives and the power of a collectivity to act. In: Lieberman, B. (Ed.), Social Choice. Gordon and Breach, New York, pp. 269-298] suggested two indices of voting power, power to prevent an action and power to initiate an action. This paper rigorously demonstrates relationship between the two indices and shows that they satisfy several attractive properties.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Barua, Rana & Chakravarty, Satya R. & Roy, Sonali, 2006. "On the Coleman indices of voting power," European Journal of Operational Research, Elsevier, vol. 171(1), pages 273-289, May.
  • Handle: RePEc:eee:ejores:v:171:y:2006:i:1:p:273-289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00579-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    2. Owen, G & Shapley, L S, 1989. "Optimal Location of Candidates in Ideological Space," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(3), pages 339-356.
    3. M. J. Albizuri, 2001. "An axiomatization of the modified Banzhaf Coleman index," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 167-176.
    4. Federico Valenciano & Annick Laruelle, 2002. "Assessment Of Voting Situations: The Probabilistic Foundations," Working Papers. Serie AD 2002-22, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    5. Dan S. Felsenthal & Moshé Machover, 1998. "The Measurement of Voting Power," Books, Edward Elgar Publishing, number 1489.
    6. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    7. Barua, Rana & Chakravarty, Satya R. & Roy, Sonali & Sarkar, Palash, 2004. "A characterization and some properties of the Banzhaf-Coleman-Dubey-Shapley sensitivity index," Games and Economic Behavior, Elsevier, vol. 49(1), pages 31-48, October.
    8. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    9. Andrzej S. Nowak & Tadeusz Radzik, 2000. "note: An alternative characterization of the weighted Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 127-132.
    10. R J Johnston, 1978. "On the Measurement of Power: Some Reactions to Laver," Environment and Planning A, , vol. 10(8), pages 907-914, August.
    11. Straffin, Philip Jr., 1994. "Power and stability in politics," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 32, pages 1127-1151, Elsevier.
    12. (*), Gerard van der Laan & RenÊ van den Brink, 1998. "Axiomatizations of the normalized Banzhaf value and the Shapley value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(4), pages 567-582.
    13. Leech, Dennis, 2002. "Designing the Voting System for the Council of the European Union," Public Choice, Springer, vol. 113(3-4), pages 437-464, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy, Sonali, 2008. "The exact lower bound for the Coleman index of the power of a collectivity for a special class of simple majority games," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 296-300, September.
    2. Kong, Qianqian & Peters, Hans, 2023. "Power indices for networks, with applications to matching markets," European Journal of Operational Research, Elsevier, vol. 306(1), pages 448-456.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barua, Rana & Chakravarty, Satya R. & Sarkar, Palash, 2009. "Minimal-axiom characterizations of the Coleman and Banzhaf indices of voting power," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 367-375, November.
    2. Carreras, Francesc, 2005. "A decisiveness index for simple games," European Journal of Operational Research, Elsevier, vol. 163(2), pages 370-387, June.
    3. Barua, Rana & Chakravarty, Satya R. & Roy, Sonali & Sarkar, Palash, 2004. "A characterization and some properties of the Banzhaf-Coleman-Dubey-Shapley sensitivity index," Games and Economic Behavior, Elsevier, vol. 49(1), pages 31-48, October.
    4. Berghammer, Rudolf & Bolus, Stefan & Rusinowska, Agnieszka & de Swart, Harrie, 2011. "A relation-algebraic approach to simple games," European Journal of Operational Research, Elsevier, vol. 210(1), pages 68-80, April.
    5. Michel Grabisch & Agnieszka Rusinowska, 2010. "A model of influence in a social network," Theory and Decision, Springer, vol. 69(1), pages 69-96, July.
    6. Bhattacherjee, Sanjay & Sarkar, Palash, 2017. "Correlation and inequality in weighted majority voting games," MPRA Paper 83168, University Library of Munich, Germany.
    7. Giulia Bernardi, 2018. "A New Axiomatization of the Banzhaf Index for Games with Abstention," Group Decision and Negotiation, Springer, vol. 27(1), pages 165-177, February.
    8. Stefan Napel & Mika Widgren, 2004. "Power Measurement as Sensitivity Analysis," Journal of Theoretical Politics, , vol. 16(4), pages 517-538, October.
    9. Fabrice Barthelemy & Mathieu Martin, 2011. "A Comparison Between the Methods of Apportionment Using Power Indices: the Case of the US Presidential Elections," Annals of Economics and Statistics, GENES, issue 101-102, pages 87-106.
    10. Leech, Dennis, 2002. "The Use of Coleman's Power Indices to Inform the Choice of Voting Rule with Reference to the IMF Governing Body and the EU Council of Ministers," Economic Research Papers 269458, University of Warwick - Department of Economics.
    11. Michel Grabisch & Agnieszka Rusinowska, 2007. "Influence Indices," Post-Print halshs-00142479, HAL.
    12. Fabrice Barthelemy & Mathieu Martin & Bertrand Tchantcho, 2011. "Some conjectures on the two main power indices," THEMA Working Papers 2011-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    13. René Brink & Agnieszka Rusinowska & Frank Steffen, 2013. "Measuring power and satisfaction in societies with opinion leaders: an axiomatization," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 671-683, September.
    14. Le Breton, Michel & Lepelley, Dominique & Macé, Antonin & Merlin, Vincent, 2017. "Le mécanisme optimal de vote au sein du conseil des représentants d’un système fédéral," L'Actualité Economique, Société Canadienne de Science Economique, vol. 93(1-2), pages 203-248, Mars-Juin.
    15. Annick Laruelle & Federico Valenciano, 2005. "A critical reappraisal of some voting power paradoxes," Public Choice, Springer, vol. 125(1), pages 17-41, July.
    16. Josep Freixas & Montserrat Pons, 2017. "Using the Multilinear Extension to Study Some Probabilistic Power Indices," Group Decision and Negotiation, Springer, vol. 26(3), pages 437-452, May.
    17. Paul Schure & Amy Verdun, 2008. "Legislative Bargaining in the European Union," European Union Politics, , vol. 9(4), pages 459-486, December.
    18. Ori Haimanko, 2019. "Composition independence in compound games: a characterization of the Banzhaf power index and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 755-768, September.
    19. Houy, Nicolas & Zwicker, William S., 2014. "The geometry of voting power: Weighted voting and hyper-ellipsoids," Games and Economic Behavior, Elsevier, vol. 84(C), pages 7-16.
    20. Michel Grabisch & Agnieszka Rusinowska, 2009. "Measuring influence in command games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 177-209, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:171:y:2006:i:1:p:273-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.