IDEAS home Printed from https://ideas.repec.org/p/ekd/000239/23900058.html
   My bibliography  Save this paper

Short Term Demand Forecasting Using Double Exponential Smoothing and Interventions to Account for Holidays and Temperature Effects

Author

Listed:
  • Cristina Miranda
  • Reinaldo Castro Souza
  • Mônica Barros
  • Cristina Vidigal Cabral de Miranda

Abstract

No abstract is available for this item.

Suggested Citation

  • Cristina Miranda & Reinaldo Castro Souza & Mônica Barros & Cristina Vidigal Cabral de Miranda, 2007. "Short Term Demand Forecasting Using Double Exponential Smoothing and Interventions to Account for Holidays and Temperature Effects," EcoMod2007 23900058, EcoMod.
  • Handle: RePEc:ekd:000239:23900058
    as

    Download full text from publisher

    File URL: http://www.ecomod.net/sites/default/files/document-conference/ecomod2007/294.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jose Ramon Cancelo & Antoni Espasa, 1996. "Modelling and forecastng daily series of electricity demand," Investigaciones Economicas, Fundación SEPI, vol. 20(3), pages 359-376, September.
    2. Taylor, James W. & Buizza, Roberto, 2003. "Using weather ensemble predictions in electricity demand forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 57-70.
    3. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Trull & Juan Carlos García-Díaz & Alicia Troncoso, 2020. "Initialization Methods for Multiple Seasonal Holt–Winters Forecasting Models," Mathematics, MDPI, vol. 8(2), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    2. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    3. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    4. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    5. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    6. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    7. Pielow, Amy & Sioshansi, Ramteen & Roberts, Matthew C., 2012. "Modeling short-run electricity demand with long-term growth rates and consumer price elasticity in commercial and industrial sectors," Energy, Elsevier, vol. 46(1), pages 533-540.
    8. Cancelo, José Ramón & Grafe, Rosmarie, 2007. "Forecasting from one day to one week ahead for the Spanish system operator," DES - Working Papers. Statistics and Econometrics. WS ws078418, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Chan, Kam Fong & Gray, Philip & van Campen, Bart, 2008. "A new approach to characterizing and forecasting electricity price volatility," International Journal of Forecasting, Elsevier, vol. 24(4), pages 728-743.
    10. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    11. Trapero, Juan R. & Pedregal, Diego J., 2009. "Frequency domain methods applied to forecasting electricity markets," Energy Economics, Elsevier, vol. 31(5), pages 727-735, September.
    12. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    13. D J Pedregal & P C Young, 2008. "Development of improved adaptive approaches to electricity demand forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1066-1076, August.
    14. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    15. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    16. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    17. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    18. Foster, John & Bell, William Paul & Wild, Phillip & Sharma, Deepak & Sandu, Suwin & Froome, Craig & Wagner, Liam & Misra, Suchi & Bagia, Ravindra, 2013. "Analysis of institutional adaptability to redress electricity infrastructure vulnerability due to climate change," MPRA Paper 47787, University Library of Munich, Germany.
    19. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    20. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ekd:000239:23900058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theresa Leary (email available below). General contact details of provider: https://edirc.repec.org/data/ecomoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.