IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/89492.html
   My bibliography  Save this paper

Quantifying the predictability of a predictand: demonstrating the diverse roles of serial dependence in the estimation of forecast skill

Author

Listed:
  • Jarman, Alexander
  • Smith, Leonard A.

Abstract

Predictability varies. In geophysical systems, and related mathematical dynamical systems, variations are often expressed as serial dependence in the skill with which the system is, or can be, predicted. It is well known, of course, that estimation is more complicated in cases where the time series sample in‐hand does not reflect an independent from the target population; failure to account for this results in erroneous estimates both of the skill of the forecast system and of the statistical uncertainty in the estimated skill. This effect need not be indicated in the time series of the predictand; specifically: it is proven by example that linear correlation in the predictand is neither necessary nor sufficient to identify misestimation. Wilks [Quarterly Journal of the Royal Meteorological Society 136, 2109 (2010)] has shown that temporal correlations in forecast skill give rise to biased estimates of skill of a forecast system, and made progress on accounting for this effect in probability‐of‐precipitation forecasts. Related effects are explored in probability density forecasts of a continuous target in three different dynamical systems (demonstrating that linear correlation in the predictand is neither necessary nor sufficient), and a simple procedure is presented as a straightforward, good practice test for the effect when estimating the skill of forecast system.

Suggested Citation

  • Jarman, Alexander & Smith, Leonard A., 2018. "Quantifying the predictability of a predictand: demonstrating the diverse roles of serial dependence in the estimation of forecast skill," LSE Research Online Documents on Economics 89492, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:89492
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/89492/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    2. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    3. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    4. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    5. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    6. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    8. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    9. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    10. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    11. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    12. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    13. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    14. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    15. Rafael Frongillo, 2022. "Quantum Information Elicitation," Papers 2203.07469, arXiv.org.
    16. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    17. Peysakhovich, Alexander & Plagborg-Møller, Mikkel, 2012. "A note on proper scoring rules and risk aversion," Economics Letters, Elsevier, vol. 117(1), pages 357-361.
    18. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    19. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.
    20. Remy Elbez & Jeff Folz & Alan McLean & Hernan Roca & Joseph M Labuz & Kenneth J Pienta & Shuichi Takayama & Raoul Kopelman, 2021. "Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.

    More about this item

    Keywords

    probabilistic forecasting; forecast skill; serial correlation;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:89492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.