IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/68783.html
   My bibliography  Save this paper

Change of numeraire in the two-marginals martingale transport problem

Author

Listed:
  • Campi, Luciano
  • Laachir, Ismail
  • Martini, Claude

Abstract

In this paper, we apply change of numeraire techniques to the optimal transport approach for computing model-free prices of derivatives in a two-period setting. In particular, we consider the optimal transport plan constructed in Hobson and Klimmek (Finance Stoch. 19:189–214, 2015) as well as the one introduced in Beiglböck and Juillet (Ann. Probab. 44:42–106, 2016) and further studied in Henry-Labordère and Touzi (Finance Stoch. 20:635–668, 2016). We show that in the case of positive martingales, a suitable change of numeraire applied to Hobson and Klimmek (Finance Stoch. 19:189–214, 2015) exchanges forward start straddles of type I and type II, so that the optimal transport plan in the subhedging problems is the same for both types of options. Moreover, for Henry-Labordère and Touzi’s (Finance Stoch. 20:635–668, 2016) construction, the right-monotone transference plan can be viewed as a mirror coupling of its left counterpart under the change of numeraire.

Suggested Citation

  • Campi, Luciano & Laachir, Ismail & Martini, Claude, 2017. "Change of numeraire in the two-marginals martingale transport problem," LSE Research Online Documents on Economics 68783, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:68783
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/68783/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    2. Mathias Beiglbock & Marcel Nutz & Nizar Touzi, 2015. "Complete Duality for Martingale Optimal Transport on the Line," Papers 1507.00671, arXiv.org, revised Jun 2016.
    3. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    4. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    5. Dolinsky, Yan & Soner, H. Mete, 2015. "Martingale optimal transport in the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3893-3931.
    6. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    7. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beatrice Acciaio & Mathias Beiglboeck & Gudmund Pammer, 2020. "Weak Transport for Non-Convex Costs and Model-independence in a Fixed-Income Market," Papers 2011.04274, arXiv.org, revised Aug 2023.
    2. Beatrice Acciaio & Antonio Marini & Gudmund Pammer, 2023. "Calibration of the Bass Local Volatility model," Papers 2311.14567, arXiv.org.
    3. Julio Backhoff-Veraguas & Gudmund Pammer & Walter Schachermayer, 2024. "The Gradient Flow of the Bass Functional in Martingale Optimal Transport," Papers 2407.18781, arXiv.org.
    4. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    5. Julio Backhoff-Veraguas & Gregoire Loeper & Jan Obloj, 2024. "Geometric Martingale Benamou-Brenier transport and geometric Bass martingales," Papers 2406.04016, arXiv.org.
    6. Julio Backhoff-Veraguas & Gudmund Pammer, 2019. "Stability of martingale optimal transport and weak optimal transport," Papers 1904.04171, arXiv.org, revised Dec 2020.
    7. Beiglböck, Mathias & Henry-Labordère, Pierre & Touzi, Nizar, 2017. "Monotone martingale transport plans and Skorokhod embedding," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 3005-3013.
    8. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    9. Mathias Beiglbock & Gudmund Pammer & Lorenz Riess, 2024. "Change of numeraire for weak martingale transport," Papers 2406.07523, arXiv.org.
    10. Mathias Beiglboeck & Alexander Cox & Martin Huesmann, 2017. "The geometry of multi-marginal Skorokhod Embedding," Papers 1705.09505, arXiv.org.
    11. Julio Backhoff-Veraguas & Mathias Beiglbock & Martin Huesmann & Sigrid Kallblad, 2017. "Martingale Benamou--Brenier: a probabilistic perspective," Papers 1708.04869, arXiv.org, revised Jan 2019.
    12. Mathias Beiglboeck & Pierre Henry-Labordere & Nizar Touzi, 2017. "Monotone Martingale Transport Plans and Skorohod Embedding," Papers 1701.06779, arXiv.org.
    13. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglbock & Manu Eder, 2019. "Adapted Wasserstein Distances and Stability in Mathematical Finance," Papers 1901.07450, arXiv.org, revised May 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Campi & Ismail Laachir & Claude Martini, 2017. "Change of numeraire in the two-marginals martingale transport problem," Finance and Stochastics, Springer, vol. 21(2), pages 471-486, April.
    2. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    3. Marcel Nutz & Florian Stebegg & Xiaowei Tan, 2017. "Multiperiod Martingale Transport," Papers 1703.10588, arXiv.org, revised May 2019.
    4. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    5. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    6. Acciaio, Beatrice & Larsson, Martin, 2017. "Semi-static completeness and robust pricing by informed investors," LSE Research Online Documents on Economics 68502, London School of Economics and Political Science, LSE Library.
    7. Cox, Alexander M.G. & Kinsley, Sam M., 2019. "Discretisation and duality of optimal Skorokhod embedding problems," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2376-2405.
    8. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    9. Nassif Ghoussoub & Young-Heon Kim & Tongseok Lim, 2017. "Optimal Brownian Stopping between radially symmetric marginals in general dimensions," Papers 1711.02784, arXiv.org.
    10. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    11. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    12. Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
    13. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    14. Mathias Beiglbock & Marcel Nutz & Nizar Touzi, 2015. "Complete Duality for Martingale Optimal Transport on the Line," Papers 1507.00671, arXiv.org, revised Jun 2016.
    15. Johannes Muhle-Karbe & Marcel Nutz, 2016. "A Risk-Neutral Equilibrium Leading to Uncertain Volatility Pricing," Papers 1612.09152, arXiv.org, revised Jan 2018.
    16. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    17. Mun-Chol Kim & Song-Chol Ryom, 2022. "Pathwise superhedging under proportional transaction costs," Mathematics and Financial Economics, Springer, volume 16, number 4, March.
    18. Ibrahim Ekren & H. Mete Soner, 2016. "Constrained Optimal Transport," Papers 1610.02940, arXiv.org, revised Sep 2017.
    19. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    20. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063, arXiv.org, revised Aug 2016.

    More about this item

    Keywords

    robust hedging; mode-independent pricing; model uncertainty; optimal transport; change of numeraire; forward start straddle;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:68783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.