IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1703.10588.html
   My bibliography  Save this paper

Multiperiod Martingale Transport

Author

Listed:
  • Marcel Nutz
  • Florian Stebegg
  • Xiaowei Tan

Abstract

Consider a multiperiod optimal transport problem where distributions $\mu_{0},\dots,\mu_{n}$ are prescribed and a transport corresponds to a scalar martingale $X$ with marginals $X_{t}\sim\mu_{t}$. We introduce particular couplings called left-monotone transports; they are characterized equivalently by a no-crossing property of their support, as simultaneous optimizers for a class of bivariate transport cost functions with a Spence--Mirrlees property, and by an order-theoretic minimality property. Left-monotone transports are unique if $\mu_{0}$ is atomless, but not in general. In the one-period case $n=1$, these transports reduce to the Left-Curtain coupling of Beiglb\"ock and Juillet. In the multiperiod case, the bivariate marginals for dates $(0,t)$ are of Left-Curtain type, if and only if $\mu_{0},\dots,\mu_{n}$ have a specific order property. The general analysis of the transport problem also gives rise to a strong duality result and a description of its polar sets. Finally, we study a variant where the intermediate marginals $\mu_{1},\dots,\mu_{n-1}$ are not prescribed.

Suggested Citation

  • Marcel Nutz & Florian Stebegg & Xiaowei Tan, 2017. "Multiperiod Martingale Transport," Papers 1703.10588, arXiv.org, revised May 2019.
  • Handle: RePEc:arx:papers:1703.10588
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1703.10588
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Henry-Labord`ere & Jan Ob{l}'oj & Peter Spoida & Nizar Touzi, 2012. "The maximum maximum of a martingale with given $n$ marginals," Papers 1203.6877, arXiv.org, revised Jan 2016.
    2. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    3. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    4. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    5. David Hobson & Martin Klimmek, 2015. "Robust price bounds for the forward starting straddle," Finance and Stochastics, Springer, vol. 19(1), pages 189-214, January.
    6. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    7. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    8. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    9. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    10. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    11. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063, arXiv.org, revised Aug 2016.
    12. Dolinsky, Yan & Soner, H. Mete, 2015. "Martingale optimal transport in the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3893-3931.
    13. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    14. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    15. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arash Fahim & Yu-Jui Huang & Saeed Khalili, 2019. "Generalized Duality for Model-Free Superhedging given Marginals," Papers 1909.06036, arXiv.org, revised Sep 2019.
    2. Nicole Bäuerle & Daniel Schmithals, 2019. "Martingale optimal transport in the discrete case via simple linear programming techniques," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 453-476, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    2. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    3. Mathias Beiglbock & Marcel Nutz & Nizar Touzi, 2015. "Complete Duality for Martingale Optimal Transport on the Line," Papers 1507.00671, arXiv.org, revised Jun 2016.
    4. Johannes Muhle-Karbe & Marcel Nutz, 2016. "A Risk-Neutral Equilibrium Leading to Uncertain Volatility Pricing," Papers 1612.09152, arXiv.org, revised Jan 2018.
    5. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    6. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    7. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    8. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    9. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063, arXiv.org, revised Aug 2016.
    10. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2016. "Hedging with Small Uncertainty Aversion," Papers 1605.06429, arXiv.org.
    11. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    12. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2017. "Hedging with small uncertainty aversion," Finance and Stochastics, Springer, vol. 21(1), pages 1-64, January.
    13. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    14. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    15. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    16. Sebastian Herrmann & Florian Stebegg, 2017. "Robust Pricing and Hedging around the Globe," Papers 1707.08545, arXiv.org, revised Apr 2019.
    17. Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
    18. Alessandro Doldi & Marco Frittelli, 2020. "Entropy Martingale Optimal Transport and Nonlinear Pricing-Hedging Duality," Papers 2005.12572, arXiv.org, revised Sep 2021.
    19. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    20. Luciano Campi & Ismail Laachir & Claude Martini, 2017. "Change of numeraire in the two-marginals martingale transport problem," Finance and Stochastics, Springer, vol. 21(2), pages 471-486, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1703.10588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.