IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/25219.html
   My bibliography  Save this paper

Bivariate hard thresholding in wavelet function estimation

Author

Listed:
  • Fryzlewicz, Piotr

Abstract

We propose a generic bivariate hard thresholding estimator of the discrete wavelet coefficients of a function contaminated with i.i.d. Gaussian noise. We demonstrate its good risk properties in a motivating example, and derive upper bounds for its mean-square error. Motivated by the clustering of large wavelet coefficients in real-life signals, we propose two wavelet denoising algorithms, both of which use specific instances of our bivariate estimator. The BABTE algorithm uses basis averaging, and the BITUP algorithm uses the coupling of ``parents" and ``children" in the wavelet coefficient tree. We prove the near-optimality of both algorithms over the usual range of Besov spaces, and demonstrate their excellent finite-sample performance. Finally, we propose a robust and effective technique for choosing the parameters of BITUP in a data-driven way.

Suggested Citation

  • Fryzlewicz, Piotr, 2007. "Bivariate hard thresholding in wavelet function estimation," LSE Research Online Documents on Economics 25219, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:25219
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/25219/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abramovich, Felix & Benjamini, Yoav, 1996. "Adaptive thresholding of wavelet coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 22(4), pages 351-361, August.
    2. Abramovich, Felix & Besbeas, Panagiotis & Sapatinas, Theofanis, 2002. "Empirical Bayes approach to block wavelet function estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 435-451, June.
    3. Sofia C. Olhede & Andrew T. Walden, 2004. "'Analytic' wavelet thresholding," Biometrika, Biometrika Trust, vol. 91(4), pages 955-973, December.
    4. Antoniadis, Anestis & Bigot, Jeremie & Sapatinas, Theofanis, 2001. "Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 6(i06).
    5. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    6. Stuart Barber & Guy P. Nason, 2004. "Real nonparametric regression using complex wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 927-939, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reményi, Norbert & Vidakovic, Brani, 2013. "Λ-neighborhood wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 404-416.
    2. Lin Teng & Hang Li, 2019. "CSDK: A Chi-square distribution-Kernel method for image de-noising under the Internet of things big data environment," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nilotpal Sanyal & Marco A. R. Ferreira, 2017. "Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 361-388, November.
    2. Serban, Nicoleta, 2010. "Noise reduction for enhanced component identification in multi-dimensional biomolecular NMR studies," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1051-1065, April.
    3. Reményi, Norbert & Vidakovic, Brani, 2013. "Λ-neighborhood wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 404-416.
    4. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.
    5. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    6. Vincent Rivoirard, 2004. "Thresholding procedure with priors based on Pareto distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 213-246, June.
    7. Stuart Barber & Guy P. Nason, 2004. "Real nonparametric regression using complex wavelets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 927-939, November.
    8. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    9. Lee, Kichun & Vidakovic, Brani, 2012. "Semi-supervised wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1681-1691.
    10. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    11. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    12. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    13. Autin, Florent & Freyermuth, Jean-Marc & von Sachs, Rainer, 2011. "Combining thresholding rules: a new way to improve the performance of wavelet estimators," LIDAM Discussion Papers ISBA 2011021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. De Canditiis, Daniela, 2014. "A frame based shrinkage procedure for fast oscillating functions," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 142-150.
    15. Joseph Romano & Azeem Shaikh & Michael Wolf, 2008. "Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 417-442, November.
    16. Jiang, Rong & Yan, Hong, 2008. "Studies of spectral properties of short genes using the wavelet subspace Hilbert–Huang transform (WSHHT)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4223-4247.
    17. repec:jss:jstsof:12:i08 is not listed on IDEAS
    18. Sam Efromovich, 2004. "Analysis of blockwise shrinkage wavelet estimates via lower bounds for no-signal setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 205-223, June.
    19. Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008. "Formalized Data Snooping Based On Generalized Error Rates," Econometric Theory, Cambridge University Press, vol. 24(2), pages 404-447, April.
    20. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    21. Beran, Jan & Heiler, Mark A., 2008. "A nonparametric regression cross spectrum for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 684-714, April.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:25219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.