IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v91y2004i4p955-973.html
   My bibliography  Save this article

'Analytic' wavelet thresholding

Author

Listed:
  • Sofia C. Olhede
  • Andrew T. Walden

Abstract

We introduce so-called analytic stationary wavelet transform thresholding where, using the discrete Hilbert transform, we create a complex-valued 'analytic' vector from which an amplitude vector is defined. Thresholding of a real-valued wavelet coefficient at some transform level is carried out according to the corresponding value in this amplitude vector; relevant statistical results follow from properties of the discrete Hilbert transform. Analytic stationary wavelet transform thresholding is found to produce consistently a reduced mean squared error compared to using standard stationary wavelet transform, or 'cycle spinning', thresholding. For signals with extensive oscillations at some transform levels, this improvement is very marked. Furthermore we show that our thresholding test is invariant to phase shifts in the data, whereas, if complex wavelet filters are being used, the filters must be analytic or anti-analytic at each level of the wavelet transform. Copyright 2004, Oxford University Press.

Suggested Citation

  • Sofia C. Olhede & Andrew T. Walden, 2004. "'Analytic' wavelet thresholding," Biometrika, Biometrika Trust, vol. 91(4), pages 955-973, December.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:4:p:955-973
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/91.4.955
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fryzlewicz, Piotr, 2007. "Bivariate hard thresholding in wavelet function estimation," LSE Research Online Documents on Economics 25219, London School of Economics and Political Science, LSE Library.
    2. Jiang, Rong & Yan, Hong, 2008. "Studies of spectral properties of short genes using the wavelet subspace Hilbert–Huang transform (WSHHT)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4223-4247.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:4:p:955-973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.