IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/25187.html
   My bibliography  Save this paper

Normalized least-squares estimation in time-varying ARCH models

Author

Listed:
  • Fryzlewicz, Piotr
  • Sapatinas, Theofanis
  • Subba Rao, Suhasini

Abstract

We investigate the time-varying ARCH (tvARCH) process. It is shown that it can be used to describe the slow decay of the sample autocorrelations of the squared returns often observed in financial time series, which warrants the further study of parameter estimation methods for the model. Since the parameters are changing over time, a successful estimator needs to perform well for small samples. We propose a kernel normalized-least-squares (kernel-NLS) estimator which has a closed form, and thus outperforms the previously proposed kernel quasi-maximum likelihood (kernel-QML) estimator for small samples. The kernel-NLS estimator is simple, works under mild moment assumptions and avoids some of the parameter space restrictions imposed by the kernel-QML estimator. Theoretical evidence shows that the kernel-NLS estimator has the same rate of convergence as the kernel-QML estimator. Due to the kernel-NLS estimator’s ease of computation, computationally intensive procedures can be used. A prediction-based cross-validation method is proposed for selecting the bandwidth of the kernel-NLS estimator. Also, we use a residual-based bootstrap scheme to bootstrap the tvARCH process. The bootstrap sample is used to obtain pointwise confidence intervals for the kernel-NLS estimator. It is shown that distributions of the estimator using the bootstrap and the “true” tvARCH estimator asymptotically coincide. We illustrate our estimation method on a variety of currency exchange and stock index data for which we obtain both good fits to the data and accurate forecasts.

Suggested Citation

  • Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2008. "Normalized least-squares estimation in time-varying ARCH models," LSE Research Online Documents on Economics 25187, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:25187
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/25187/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
    2. Arup Bose & Kanchan Mukherjee, 2003. "Estimating The Arch Parameters By Solving Linear Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 127-136, March.
    3. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus, 2000. "Stationary Arch Models: Dependence Structure And Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 16(1), pages 3-22, February.
    4. Piotr Fryzlewicz & Theofanis Sapatinas & Suhasini Subba Rao, 2006. "A Haar--Fisz technique for locally stationary volatility estimation," Biometrika, Biometrika Trust, vol. 93(3), pages 687-704, September.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2006. "A Haar-Fisz technique for locally stationary volatility estimation," LSE Research Online Documents on Economics 25225, London School of Economics and Political Science, LSE Library.
    7. Bera, Anil K & Higgins, Matthew L, 1993. "ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fryzlewicz, Piotr & Oh, H. S., 2011. "Thick pen transformation for time series," LSE Research Online Documents on Economics 37663, London School of Economics and Political Science, LSE Library.
    2. Kejin Wu & Sayar Karmakar & Rangan Gupta, 2023. "GARCHX-NoVaS: A Model-free Approach to Incorporate Exogenous Variables," Papers 2308.13346, arXiv.org, revised Sep 2024.
    3. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    4. Rohan, Neelabh, 2013. "A time varying GARCH(p,q) model and related statistical inference," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1983-1990.
    5. Bonsoo Koo & Oliver Linton, 2010. "Semiparametric Estimation of Locally Stationary Diffusion Models," STICERD - Econometrics Paper Series 551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Kejin Wu & Sayar Karmakar, 2023. "A model-free approach to do long-term volatility forecasting and its variants," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-38, December.
    7. Frazier, David T. & Koo, Bonsoo, 2021. "Indirect inference for locally stationary models," Journal of Econometrics, Elsevier, vol. 223(1), pages 1-27.
    8. Karmakar, Sayar & Richter, Stefan & Wu, Wei Biao, 2022. "Simultaneous inference for time-varying models," Journal of Econometrics, Elsevier, vol. 227(2), pages 408-428.
    9. Cizek, P., 2010. "Modelling Conditional Heteroscedasticity in Nonstationary Series," Discussion Paper 2010-84, Tilburg University, Center for Economic Research.
    10. David T. Frazier & Bonsoo Koo, 2020. "Indirect Inference for Locally Stationary Models," Monash Econometrics and Business Statistics Working Papers 30/20, Monash University, Department of Econometrics and Business Statistics.
    11. Roueff, François & von Sachs, Rainer, 2011. "Locally stationary long memory estimation," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 813-844, April.
    12. Khismatullina, Marina & Vogt, Michael, 2023. "Nonparametric comparison of epidemic time trends: The case of COVID-19," Journal of Econometrics, Elsevier, vol. 232(1), pages 87-108.
    13. David Gabauer & Rangan Gupta & Sayar Karmakar & Joshua Nielsen, 2022. "Stock Market Bubbles and the Forecastability of Gold Returns (and Volatility)," Working Papers 202228, University of Pretoria, Department of Economics.
    14. Chen, Bin & Hong, Yongmiao, 2016. "Detecting For Smooth Structural Changes In Garch Models," Econometric Theory, Cambridge University Press, vol. 32(03), pages 740-791, June.
    15. Mishra Anuj & Ramanathan Thekke Variyam, 2017. "Nonstationary autoregressive conditional duration models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-22, September.
    16. Xuejie Feng & Chiping Zhang, 2020. "A Perturbation Method to Optimize the Parameters of Autoregressive Conditional Heteroscedasticity Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 1021-1044, March.
    17. Dennis Kristensen & Young Jun Lee, 2019. "Local Polynomial Estimation of Time-Varying Parameters in Nonlinear Models," Papers 1904.05209, arXiv.org, revised Aug 2023.
    18. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2021. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 224(2), pages 306-329.
    19. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Papers 1907.04147, arXiv.org, revised Oct 2020.
    20. Lionel Truquet, 2017. "Parameter stability and semiparametric inference in time varying auto-regressive conditional heteroscedasticity models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1391-1414, November.
    21. Kejin Wu & Sayar Karmakar, 2021. "Model-Free Time-Aggregated Predictions for Econometric Datasets," Forecasting, MDPI, vol. 3(4), pages 1-14, December.
    22. Sayar Karmakar & Marek Chudy & Wei Biao Wu, 2020. "Long-term prediction intervals with many covariates," Papers 2012.08223, arXiv.org, revised Sep 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    2. David McMillan & Alan Speight, 2005. "Long-memory and heterogeneous components in high frequency Pacific-Basin exchange rate volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(3), pages 199-226, September.
    3. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    4. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    5. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    6. McMillan, David G. & Speight, Alan E. H., 2001. "Non-ferrous metals price volatility: a component analysis," Resources Policy, Elsevier, vol. 27(3), pages 199-207, September.
    7. Pan, Qunxing & Li, Peng & Du, Xiuli, 2023. "An improved FIGARCH model with the fractional differencing operator (1-νL)d," Finance Research Letters, Elsevier, vol. 55(PB).
    8. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    9. Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Mailand, Wilhelm, 1998. "Zum Einfluß von Unsicherheit auf die gesamtwirtschaftliche Investitionstätigkeit," HWWA Discussion Papers 57, Hamburg Institute of International Economics (HWWA).
    11. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    12. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    13. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    14. Dmitri Koulikov, 2002. "Modeling Sequences of Long Memory Positive Weakly Stationary Random Variables," William Davidson Institute Working Papers Series 493, William Davidson Institute at the University of Michigan.
    15. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    16. David McMillan & Alan Speight, 2006. "Heterogeneous information flows and intra-day volatility dynamics: evidence from the UK FTSE-100 stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(13), pages 959-972.
    17. Jiangze Du & Shaojie Lai & Kin Keung Lai & Shifei Zhou, 2021. "A novel term structure stochastic model with adaptive correlation for trend analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5485-5498, October.
    18. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    19. Verbeek, Marno, 2007. "A Guide to Modern Econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 8(4), pages 125-132.
    20. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871.

    More about this item

    Keywords

    cross-validation; (G)ARCH models; kernel smoothing; least-squares estimation; locally stationary models;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:25187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.