IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/126155.html
   My bibliography  Save this paper

An information-theoretic asset pricing model

Author

Listed:
  • Ghosh, Anisha
  • Julliard, Christian
  • Taylor, Alex. P

Abstract

We show that a non-parametric estimate of the pricing kernel, extracted using an information-theoretic approach, delivers smaller out-of-sample pricing errors and a better cross-sectional fit than leading multi-factor models. The information stochastic discount factor (I-SDF) identifies sources of risk not captured by standard factors, generating very large annual alphas (20–37%) and Sharpe ratio (1.1). The I-SDF extracted from a wide cross-section of equity portfolios is highly positively skewed and leptokurtic, and implies that about a third of the observed risk premia represent compensation for 2.5% tail events. The I-SDF offers a powerful benchmark relative to which competing theories and investment strategies can be evaluated.

Suggested Citation

  • Ghosh, Anisha & Julliard, Christian & Taylor, Alex. P, 2025. "An information-theoretic asset pricing model," LSE Research Online Documents on Economics 126155, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:126155
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/126155/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    pricing kernal; relative entropy; cross-sectional asset pricing; factor models; factor mimicking portfolios; alpha;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:126155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.