IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/124317.html
   My bibliography  Save this paper

Multivariate zero-inflated INAR(1) model with an application in automobile insurance

Author

Listed:
  • Zhang, Pengcheng
  • Chen, Zezhun
  • Tzougas, George
  • Calderín–Ojeda, Enrique
  • Dassios, Angelos
  • Wu, Xueyuan

Abstract

The objective of this article is to propose a comprehensive solution for analyzing multidimensional non-life claim count data that exhibits time and cross-dependence, as well as zero inflation. To achieve this, we introduce a multivariate INAR(1) model, with the innovation term characterized by either a multivariate zero-inflated Poisson distribution or a multivariate zero-inflated hurdle Poisson distribution. Additionally, our modeling framework accounts for the impact of individual and coverage-specific covariates on the mean parameters of each model, thereby facilitating the computation of customized insurance premiums based on varying risk profiles. To estimate the model parameters, we employ a novel expectation-maximization (EM) algorithm. Our model demonstrates satisfactory performance in the analysis of European motor third-party liability claim count data.

Suggested Citation

  • Zhang, Pengcheng & Chen, Zezhun & Tzougas, George & Calderín–Ojeda, Enrique & Dassios, Angelos & Wu, Xueyuan, 2024. "Multivariate zero-inflated INAR(1) model with an application in automobile insurance," LSE Research Online Documents on Economics 124317, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:124317
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/124317/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chai Fung, Tsz & Badescu, Andrei L. & Sheldon Lin, X., 2019. "A Class Of Mixture Of Experts Models For General Insurance: Application To Correlated Claim Frequencies," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 647-688, September.
    2. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    3. Bermúdez, Lluís & Guillén, Montserrat & Karlis, Dimitris, 2018. "Allowing for time and cross dependence assumptions between claim counts in ratemaking models," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 161-169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    2. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    3. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.
    4. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    5. Tzougas, George & di Cerchiara, Alice Pignatelli, 2021. "Bivariate mixed Poisson regression models with varying dispersion," LSE Research Online Documents on Economics 114327, London School of Economics and Political Science, LSE Library.
    6. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    7. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    8. Gning, Lucien & Diagne, M.L. & Tchuenche, J.M., 2023. "Hierarchical generalized linear models, correlation and a posteriori ratemaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    9. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    10. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    11. Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.
    12. Raffaele Zanoli & Danilo Gambelli & Francesco Solfanelli, 2014. "Assessing Risk Factors in the Organic Control System: Evidence from Inspection Data in Italy," Risk Analysis, John Wiley & Sons, vol. 34(12), pages 2174-2187, December.
    13. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    14. Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Transportation, Springer, vol. 46(3), pages 735-752, June.
    15. Marjan Qazvini, 2019. "On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study," Risks, MDPI, vol. 7(3), pages 1-17, June.
    16. Delong, Łukasz & Lindholm, Mathias & Wüthrich, Mario V., 2021. "Gamma Mixture Density Networks and their application to modelling insurance claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 240-261.
    17. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Discussion Papers ISBA 2019013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Jean-Philippe Boucher & Steven Côté & Montserrat Guillen, 2017. "Exposure as Duration and Distance in Telematics Motor Insurance Using Generalized Additive Models," Risks, MDPI, vol. 5(4), pages 1-23, September.
    19. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    20. Xuejun Jiang & Yunxian Li & Aijun Yang & Ruowei Zhou, 2020. "Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk," Empirical Economics, Springer, vol. 58(5), pages 2085-2103, May.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:124317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.