IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v49y2022i3p1184-1214.html
   My bibliography  Save this article

Sequential change point tests based on U‐statistics

Author

Listed:
  • Claudia Kirch
  • Christina Stoehr

Abstract

We propose a general framework of sequential testing procedures based on U‐statistics which contains as an example a sequential CUSUM test based on differences in mean but also includes a robust sequential Wilcoxon change point procedure. Within this framework, we consider several monitoring schemes that take different observations into account to make a decision at a given time point. Unlike the originally proposed scheme that takes all observations of the monitoring period into account, we also consider a modified moving‐sum‐version as well as a version of a Page‐monitoring scheme. The latter behave almost as good for early changes while being advantageous for later changes. For all proposed procedures we provide the limit distribution under the null hypothesis of no change which yields the threshold to control the global false alarm rate asymptotically. Furthermore, we show that the proposed tests have asymptotic power one. In a simulation study we compare the performance of the sequential procedures via their empirical size, power and detection delay, which is further illustrated by means of a temperature data set.

Suggested Citation

  • Claudia Kirch & Christina Stoehr, 2022. "Sequential change point tests based on U‐statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1184-1214, September.
  • Handle: RePEc:bla:scjsta:v:49:y:2022:i:3:p:1184-1214
    DOI: 10.1111/sjos.12558
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12558
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    2. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    3. Klaus Frick & Axel Munk & Hannes Sieling, 2014. "Multiscale change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 495-580, June.
    4. Alexander Aue & Lajos Horváth & Marie Hušková & Piotr Kokoszka, 2006. "Change-point monitoring in linear models," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 373-403, November.
    5. Alexander Aue & Lajos Horváth, 2013. "Structural breaks in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 1-16, January.
    6. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    7. Chen, Zhanshou & Tian, Zheng, 2010. "Modified procedures for change point monitoring in linear models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 62-75.
    8. Marie Hušková & Claudia Kirch, 2012. "Bootstrapping sequential change-point tests for linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 673-708, July.
    9. Lajos Horváth & Gregory Rice, 2014. "Rejoinder on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 287-290, June.
    10. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    2. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2023. "Testing for changes in linear models using weighted residuals," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    3. Lajos Horváth & Zhenya Liu & Curtis Miller & Weiqing Tang, 2024. "Breaks in term structures: Evidence from the oil futures markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2317-2341, April.
    4. Yudong Chen & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional, multiscale online changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 234-266, February.
    5. Chen, Yudong & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional, multiscale online changepoint detection," LSE Research Online Documents on Economics 113665, London School of Economics and Political Science, LSE Library.
    6. Jiang, Feiyu & Wang, Runmin & Shao, Xiaofeng, 2023. "Robust inference for change points in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    7. Kleiber, Christian, 2016. "Structural Change in (Economic) Time Series," Working papers 2016/06, Faculty of Business and Economics - University of Basel.
    8. Haeran Cho & Claudia Kirch, 2022. "Two-stage data segmentation permitting multiscale change points, heavy tails and dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 653-684, August.
    9. Bouzebda, Salim & Ferfache, Anouar Abdeldjaoued, 2023. "Asymptotic properties of semiparametric M-estimators with multiple change points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    10. Christopher Dienes & Alexander Aue, 2014. "On-Line Monitoring Of Pollution Concentrations With Autoregressive Moving Average Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 239-261, May.
    11. Horváth, Lajos & Liu, Zhenya & Rice, Gregory & Wang, Shixuan, 2020. "Sequential monitoring for changes from stationarity to mild non-stationarity," Journal of Econometrics, Elsevier, vol. 215(1), pages 209-238.
    12. Josua Gösmann & Tobias Kley & Holger Dette, 2021. "A new approach for open‐end sequential change point monitoring," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 63-84, January.
    13. Marie Hušková & Claudia Kirch, 2012. "Bootstrapping sequential change-point tests for linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 673-708, July.
    14. Michael Messer, 2022. "Bivariate change point detection: Joint detection of changes in expectation and variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 886-916, June.
    15. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    16. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    17. Stergios B. Fotopoulos & Abhishek Kaul & Vasileios Pavlopoulos & Venkata K. Jandhyala, 2024. "Adaptive parametric change point inference under covariance structure changes," Statistical Papers, Springer, vol. 65(5), pages 2887-2913, July.
    18. Fabrizio Ghezzi & Eduardo Rossi & Lorenzo Trapani, 2024. "Fast Online Changepoint Detection," Papers 2402.04433, arXiv.org.
    19. Stefan Albert & Michael Messer & Julia Schiemann & Jochen Roeper & Gaby Schneider, 2017. "Multi-Scale Detection of Variance Changes in Renewal Processes in the Presence of Rate Change Points," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 1028-1052, November.
    20. Chen, Zhanshou & Tian, Zheng, 2010. "Modified procedures for change point monitoring in linear models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 62-75.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:49:y:2022:i:3:p:1184-1214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.