IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v46y2019i1p101-118.html
   My bibliography  Save this article

Extended Poisson INAR(1) processes with equidispersion, underdispersion and overdispersion

Author

Listed:
  • Marcelo Bourguignon
  • Josemar Rodrigues
  • Manoel Santos-Neto

Abstract

Real count data time series often show the phenomenon of the underdispersion and overdispersion. In this paper, we develop two extensions of the first-order integer-valued autoregressive process with Poisson innovations, based on binomial thinning, for modeling integer-valued time series with equidispersion, underdispersion, and overdispersion. The main properties of the models are derived. The methods of conditional maximum likelihood, Yule–Walker, and conditional least squares are used for estimating the parameters, and their asymptotic properties are established. We also use a test based on our processes for checking if the count time series considered is overdispersed or underdispersed. The proposed models are fitted to time series of the weekly number of syphilis cases and monthly counts of family violence illustrating its capabilities in challenging the overdispersed and underdispersed count data.

Suggested Citation

  • Marcelo Bourguignon & Josemar Rodrigues & Manoel Santos-Neto, 2019. "Extended Poisson INAR(1) processes with equidispersion, underdispersion and overdispersion," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(1), pages 101-118, January.
  • Handle: RePEc:taf:japsta:v:46:y:2019:i:1:p:101-118
    DOI: 10.1080/02664763.2018.1458216
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2018.1458216
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2018.1458216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2023. "A first order binomial mixed poisson integer-valued autoregressive model with serially dependent innovations," LSE Research Online Documents on Economics 112222, London School of Economics and Political Science, LSE Library.
    2. Irshad, M.R. & Jodrá, P. & Krishna, A. & Maya, R., 2023. "On the discrete analogue of the Teissier distribution and its associated INAR(1) process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 227-245.
    3. Vladim'ir Hol'y & Petra Tomanov'a, 2021. "Modeling Price Clustering in High-Frequency Prices," Papers 2102.12112, arXiv.org, revised Mar 2021.
    4. Emrah Altun & Naushad Mamode Khan, 2022. "Modelling with the Novel INAR(1)-PTE Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1735-1751, September.
    5. Konstantinos G. Papaspyropoulos & Dimitris Kugiumtzis, 2024. "On the Validity of Granger Causality for Ecological Count Time Series," Econometrics, MDPI, vol. 12(2), pages 1-21, May.
    6. Yao Kang & Dehui Wang & Kai Yang, 2021. "A new INAR(1) process with bounded support for counts showing equidispersion, underdispersion and overdispersion," Statistical Papers, Springer, vol. 62(2), pages 745-767, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:46:y:2019:i:1:p:101-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.