A sparse random projection-based test for overall qualitative treatment effects
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
- Minsu Chang & Sokbae Lee & Yoon‐Jae Whang, 2015. "Nonparametric tests of conditional treatment effects with an application to single‐sex schooling on academic achievements," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 307-346, October.
- S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
- repec:bla:biomet:v:71:y:2015:i:4:p:895-904 is not listed on IDEAS
- Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015.
"Some new asymptotic theory for least squares series: Pointwise and uniform results,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Some New Asymptotic Theory for Least Squares Series: Pointwise and Uniform Results," Papers 1212.0442, arXiv.org, revised Jun 2015.
- Xianyang Zhang & Guang Cheng, 2017. "Simultaneous Inference for High-Dimensional Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 757-768, April.
- Yu‐Chin Hsu, 2017.
"Consistent tests for conditional treatment effects,"
Econometrics Journal, Royal Economic Society, vol. 20(1), pages 1-22, February.
- Yu-Chin Hsu, 2013. "Consistent Tests for Conditional Treatment Effects," IEAS Working Paper : academic research 13-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan, revised Sep 2015.
- Stuart G. Baker & Nancy R. Cook & Andrew Vickers & Barnett S. Kramer, 2009. "Using relative utility curves to evaluate risk prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(4), pages 729-748, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xin Qiu & Donglin Zeng & Yuanjia Wang, 2018. "Estimation and evaluation of linear individualized treatment rules to guarantee performance," Biometrics, The International Biometric Society, vol. 74(2), pages 517-528, June.
- Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
- Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
- Yizhe Xu & Tom H. Greene & Adam P. Bress & Brian C. Sauer & Brandon K. Bellows & Yue Zhang & William S. Weintraub & Andrew E. Moran & Jincheng Shen, 2022. "Estimating the optimal individualized treatment rule from a cost‐effectiveness perspective," Biometrics, The International Biometric Society, vol. 78(1), pages 337-351, March.
- Adam Ciarleglio & Eva Petkova & Todd Ogden & Thaddeus Tarpey, 2018. "Constructing treatment decision rules based on scalar and functional predictors when moderators of treatment effect are unknown," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1331-1356, November.
- Yaoyao Xu & Menggang Yu & Ying‐Qi Zhao & Quefeng Li & Sijian Wang & Jun Shao, 2015. "Regularized outcome weighted subgroup identification for differential treatment effects," Biometrics, The International Biometric Society, vol. 71(3), pages 645-653, September.
- Muxuan Liang & Menggang Yu, 2023. "Relative contrast estimation and inference for treatment recommendation," Biometrics, The International Biometric Society, vol. 79(4), pages 2920-2932, December.
- Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
- Xin Chen & Rui Song & Jiajia Zhang & Swann Arp Adams & Liuquan Sun & Wenbin Lu, 2022. "On estimating optimal regime for treatment initiation time based on restricted mean residual lifetime," Biometrics, The International Biometric Society, vol. 78(4), pages 1377-1389, December.
- Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
- Shi, Chengchun & Song, Rui & Lu, Wenbin, 2016. "Robust learning for optimal treatment decision with NP-dimensionality," LSE Research Online Documents on Economics 102114, London School of Economics and Political Science, LSE Library.
- Michael P. Wallace & Erica E. M. Moodie, 2015. "Doubly‐robust dynamic treatment regimen estimation via weighted least squares," Biometrics, The International Biometric Society, vol. 71(3), pages 636-644, September.
- Wallace, Michael P. & Moodie, Erica E. M. & Stephens, David A., 2017. "Dynamic Treatment Regimen Estimation via Regression-Based Techniques: Introducing R Package DTRreg," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i02).
- Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.
- Emily L. Butler & Eric B. Laber & Sonia M. Davis & Michael R. Kosorok, 2018. "Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules," Biometrics, The International Biometric Society, vol. 74(1), pages 18-26, March.
- Cui, Yifan & Tchetgen Tchetgen, Eric, 2021. "On a necessary and sufficient identification condition of optimal treatment regimes with an instrumental variable," Statistics & Probability Letters, Elsevier, vol. 178(C).
- Chaeryon Kang & Holly Janes & Ying Huang, 2014. "Rejoinder: Combining biomarkers to optimize patient treatment recommendations," Biometrics, The International Biometric Society, vol. 70(3), pages 719-720, September.
- Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
- Hyung Park & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2021. "A constrained single‐index regression for estimating interactions between a treatment and covariates," Biometrics, The International Biometric Society, vol. 77(2), pages 506-518, June.
- Yebin Tao & Lu Wang, 2017. "Adaptive contrast weighted learning for multi-stage multi-treatment decision-making," Biometrics, The International Biometric Society, vol. 73(1), pages 145-155, March.
More about this item
Keywords
high-dimensional testing; optimal treatment regime; precision medicine; qualitative treatment effects; sparse random projection;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ORE-2020-04-27 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:102107. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.