IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i3p719-720.html
   My bibliography  Save this article

Rejoinder: Combining biomarkers to optimize patient treatment recommendations

Author

Listed:
  • Chaeryon Kang
  • Holly Janes
  • Ying Huang

Abstract

No abstract is available for this item.

Suggested Citation

  • Chaeryon Kang & Holly Janes & Ying Huang, 2014. "Rejoinder: Combining biomarkers to optimize patient treatment recommendations," Biometrics, The International Biometric Society, vol. 70(3), pages 719-720, September.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:3:p:719-720
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12192
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    2. Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
    3. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristin A. Linn & Eric B. Laber & Leonard A. Stefanski, 2017. "Interactive -Learning for Quantiles," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 638-649, April.
    2. Baojiang Chen & Ao Yuan & Jing Qin, 2022. "Pool adjacent violators algorithm–assisted learning with application on estimating optimal individualized treatment regimes," Biometrics, The International Biometric Society, vol. 78(4), pages 1475-1488, December.
    3. Michael P. Wallace & Erica E. M. Moodie, 2015. "Doubly‐robust dynamic treatment regimen estimation via weighted least squares," Biometrics, The International Biometric Society, vol. 71(3), pages 636-644, September.
    4. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    5. James Y. Dai & C. Jason Liang & Michael LeBlanc & Ross L. Prentice & Holly Janes, 2018. "Case†only approach to identifying markers predicting treatment effects on the relative risk scale," Biometrics, The International Biometric Society, vol. 74(2), pages 753-763, June.
    6. Qian Guan & Eric B. Laber & Brian J. Reich, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 936-942, July.
    7. Baqun Zhang & Min Zhang, 2018. "C‐learning: A new classification framework to estimate optimal dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 74(3), pages 891-899, September.
    8. Hyung Park & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2021. "A constrained single‐index regression for estimating interactions between a treatment and covariates," Biometrics, The International Biometric Society, vol. 77(2), pages 506-518, June.
    9. Hyung Park & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2023. "Functional additive models for optimizing individualized treatment rules," Biometrics, The International Biometric Society, vol. 79(1), pages 113-126, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    2. Xin Qiu & Donglin Zeng & Yuanjia Wang, 2018. "Estimation and evaluation of linear individualized treatment rules to guarantee performance," Biometrics, The International Biometric Society, vol. 74(2), pages 517-528, June.
    3. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    4. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    5. Yizhe Xu & Tom H. Greene & Adam P. Bress & Brian C. Sauer & Brandon K. Bellows & Yue Zhang & William S. Weintraub & Andrew E. Moran & Jincheng Shen, 2022. "Estimating the optimal individualized treatment rule from a cost‐effectiveness perspective," Biometrics, The International Biometric Society, vol. 78(1), pages 337-351, March.
    6. Wei Liu & Zhiwei Zhang & Lei Nie & Guoxing Soon, 2017. "A Case Study in Personalized Medicine: Rilpivirine Versus Efavirenz for Treatment-Naive HIV Patients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1381-1392, October.
    7. Kara E. Rudolph & Iván Díaz, 2022. "When the ends do not justify the means: Learning who is predicted to have harmful indirect effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 573-589, December.
    8. Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
    9. Yaoyao Xu & Menggang Yu & Ying‐Qi Zhao & Quefeng Li & Sijian Wang & Jun Shao, 2015. "Regularized outcome weighted subgroup identification for differential treatment effects," Biometrics, The International Biometric Society, vol. 71(3), pages 645-653, September.
    10. Muxuan Liang & Menggang Yu, 2023. "Relative contrast estimation and inference for treatment recommendation," Biometrics, The International Biometric Society, vol. 79(4), pages 2920-2932, December.
    11. Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
    12. Shi, Chengchun & Lu, Wenbin & Song, Rui, 2019. "A sparse random projection-based test for overall qualitative treatment effects," LSE Research Online Documents on Economics 102107, London School of Economics and Political Science, LSE Library.
    13. Xin Chen & Rui Song & Jiajia Zhang & Swann Arp Adams & Liuquan Sun & Wenbin Lu, 2022. "On estimating optimal regime for treatment initiation time based on restricted mean residual lifetime," Biometrics, The International Biometric Society, vol. 78(4), pages 1377-1389, December.
    14. Giorgos Bakoyannis, 2023. "Estimating optimal individualized treatment rules with multistate processes," Biometrics, The International Biometric Society, vol. 79(4), pages 2830-2842, December.
    15. Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
    16. Michael P. Wallace & Erica E. M. Moodie, 2015. "Doubly‐robust dynamic treatment regimen estimation via weighted least squares," Biometrics, The International Biometric Society, vol. 71(3), pages 636-644, September.
    17. Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
    18. Wallace, Michael P. & Moodie, Erica E. M. & Stephens, David A., 2017. "Dynamic Treatment Regimen Estimation via Regression-Based Techniques: Introducing R Package DTRreg," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i02).
    19. Eric B. Laber & Daniel J. Lizotte & Bradley Ferguson, 2014. "Set-valued dynamic treatment regimes for competing outcomes," Biometrics, The International Biometric Society, vol. 70(1), pages 53-61, March.
    20. Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:3:p:719-720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.