Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.12743
Download full text from publisher
References listed on IDEAS
- Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
- Frank, Richard G. & Zeckhauser, Richard J., 2007.
"Custom-made versus ready-to-wear treatments: Behavioral propensities in physicians' choices,"
Journal of Health Economics, Elsevier, vol. 26(6), pages 1101-1127, December.
- Richard G. Frank & Richard J. Zeckhauser, 2007. "Custom Made Versus Ready to Wear Treatments; Behavioral Propensities in Physician's Choices," NBER Working Papers 13445, National Bureau of Economic Research, Inc.
- Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
- Eric B. Laber & Daniel J. Lizotte & Bradley Ferguson, 2014. "Set-valued dynamic treatment regimes for competing outcomes," Biometrics, The International Biometric Society, vol. 70(1), pages 53-61, March.
- Y. Q. Zhao & D. Zeng & E. B. Laber & R. Song & M. Yuan & M. R. Kosorok, 2015. "Doubly robust learning for estimating individualized treatment with censored data," Biometrika, Biometrika Trust, vol. 102(1), pages 151-168.
- E. B. Laber & Y. Q. Zhao, 2015. "Tree-based methods for individualized treatment regimes," Biometrika, Biometrika Trust, vol. 102(3), pages 501-514.
- Susan M. Shortreed & Erica E. M. Moodie, 2012. "Estimating the optimal dynamic antipsychotic treatment regime: evidence from the sequential multiple-assignment randomized Clinical Antipsychotic Trials of Intervention and Effectiveness schizophrenia," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(4), pages 577-599, August.
- Yufan Zhao & Donglin Zeng & Mark A. Socinski & Michael R. Kosorok, 2011. "Reinforcement Learning Strategies for Clinical Trials in Nonsmall Cell Lung Cancer," Biometrics, The International Biometric Society, vol. 67(4), pages 1422-1433, December.
- Orellana Liliana & Rotnitzky Andrea & Robins James M., 2010. "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part II: Proofs of Results," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-19, March.
- Orellana Liliana & Rotnitzky Andrea & Robins James M., 2010. "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-49, March.
- Robin Henderson & Phil Ansell & Deyadeen Alshibani, 2010. "Regret-Regression for Optimal Dynamic Treatment Regimes," Biometrics, The International Biometric Society, vol. 66(4), pages 1192-1201, December.
- Lu Tian & Ash A. Alizadeh & Andrew J. Gentles & Robert Tibshirani, 2014. "A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1517-1532, December.
- Eric B. Laber & Kristin A. Linn & Leonard A. Stefanski, 2014. "Interactive model building for Q-learning," Biometrika, Biometrika Trust, vol. 101(4), pages 831-847.
- Richter, Marcel K. & Wong, K.-C.Kam-Chau, 2004. "Concave utility on finite sets," Journal of Economic Theory, Elsevier, vol. 115(2), pages 341-357, April.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2013. "Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions," Biometrika, Biometrika Trust, vol. 100(3), pages 681-694.
- Dominic Hodgkin & Joanna Volpe‐Vartanian & Elizabeth L. Merrick & Constance M. Horgan & Andrew A. Nierenberg & Richard G. Frank & Sue Lee, 2012. "Customization in prescribing for bipolar disorder," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 653-668, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yingchao Zhong & Chang Wang & Lu Wang, 2021. "Survival Augmented Patient Preference Incorporated Reinforcement Learning to Evaluate Tailoring Variables for Personalized Healthcare," Stats, MDPI, vol. 4(4), pages 1-17, September.
- Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
- Kara E. Rudolph & Iván Díaz, 2022. "When the ends do not justify the means: Learning who is predicted to have harmful indirect effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 573-589, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
- Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
- Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
- Eric B. Laber & Anastasios A. Tsiatis & Marie Davidian & Shannon T. Holloway, 2014. "Discussion of “Combining biomarkers to optimize patient treatment recommendation”," Biometrics, The International Biometric Society, vol. 70(3), pages 707-710, September.
- Qian Guan & Eric B. Laber & Brian J. Reich, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 936-942, July.
- Michael P. Wallace & Erica E. M. Moodie, 2015. "Doubly‐robust dynamic treatment regimen estimation via weighted least squares," Biometrics, The International Biometric Society, vol. 71(3), pages 636-644, September.
- Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
- Eric B. Laber & Daniel J. Lizotte & Bradley Ferguson, 2014. "Set-valued dynamic treatment regimes for competing outcomes," Biometrics, The International Biometric Society, vol. 70(1), pages 53-61, March.
- Kristin A. Linn & Eric B. Laber & Leonard A. Stefanski, 2017. "Interactive -Learning for Quantiles," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 638-649, April.
- Xin Qiu & Donglin Zeng & Yuanjia Wang, 2018. "Estimation and evaluation of linear individualized treatment rules to guarantee performance," Biometrics, The International Biometric Society, vol. 74(2), pages 517-528, June.
- Zhang, Haixiang & Huang, Jian & Sun, Liuquan, 2020. "A rank-based approach to estimating monotone individualized two treatment regimes," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
- Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.
- Giorgos Bakoyannis, 2023. "Estimating optimal individualized treatment rules with multistate processes," Biometrics, The International Biometric Society, vol. 79(4), pages 2830-2842, December.
- Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
- Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
- Shi, Chengchun & Song, Rui & Lu, Wenbin, 2016. "Robust learning for optimal treatment decision with NP-dimensionality," LSE Research Online Documents on Economics 102114, London School of Economics and Political Science, LSE Library.
- Ying Huang & Youyi Fong, 2014. "Identifying optimal biomarker combinations for treatment selection via a robust kernel method," Biometrics, The International Biometric Society, vol. 70(4), pages 891-901, December.
- I Díaz & O Savenkov & K Ballman, 2018. "Targeted learning ensembles for optimal individualized treatment rules with time-to-event outcomes," Biometrika, Biometrika Trust, vol. 105(3), pages 723-738.
- Yizhe Xu & Tom H. Greene & Adam P. Bress & Brandon K. Bellows & Yue Zhang & Zugui Zhang & Paul Kolm & William S. Weintraub & Andrew S. Moran & Jincheng Shen, 2022. "An Efficient Approach for Optimizing the Cost-effective Individualized Treatment Rule Using Conditional Random Forest," Papers 2204.10971, arXiv.org.
- Caiyun Fan & Wenbin Lu & Rui Song & Yong Zhou, 2017. "Concordance-assisted learning for estimating optimal individualized treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1565-1582, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:18-26. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.