IDEAS home Printed from https://ideas.repec.org/a/eee/chieco/v34y2015icp64-82.html
   My bibliography  Save this article

Can China harness globalization to reap domestic carbon savings? Modeling international technology diffusion in a multi-region framework

Author

Listed:
  • Jin, Wei

Abstract

This paper is devoted to examine the effect of globalization, particularly the international technology diffusion (ITD), on China's domestic carbon savings. Building on a multi-region global modeling framework, we explicitly consider both indigenous R&D and foreign technology diffusion as the dual drivers of endogenous technical change (ETC) for domestic carbon savings. Simulation results show that 1) traditional economic globalization policies like trade and FDI liberalization can boost the growth of production output, but this is at the cost of more fossil energy uses and carbon emissions; 2) technology globalization policies like removals of technology transfer barriers can facilitate the inflows of foreign technologies for domestic carbon savings; and 3) domestic emission control policies have an effect to induce restructuring and reorganization of production technology into a knowledge-intensive one and thus help lower climate compliance costs. Consequently, to create China's domestic carbon savings from globalization, policy should focus on promoting cross-country technology diffusion, beyond traditional cross-border transactions of product and capital goods. Domestic emission-based climate regulation should also be implemented to create market demand for carbon-efficient technologies and thus induce inflows of foreign advanced technologies.

Suggested Citation

  • Jin, Wei, 2015. "Can China harness globalization to reap domestic carbon savings? Modeling international technology diffusion in a multi-region framework," China Economic Review, Elsevier, vol. 34(C), pages 64-82.
  • Handle: RePEc:eee:chieco:v:34:y:2015:i:c:p:64-82
    DOI: 10.1016/j.chieco.2015.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1043951X1500036X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chieco.2015.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bin Xu & Jianmao Wang, 1999. "Capital Goods Trade and R&D Spillovers in the OECD," Canadian Journal of Economics, Canadian Economics Association, vol. 32(5), pages 1258-1274, November.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    4. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    5. Eaton, Jonathan & Kortum, Samuel, 2001. "Trade in capital goods," European Economic Review, Elsevier, vol. 45(7), pages 1195-1235.
    6. Nina Pavcnik, 2002. "Trade Liberalization, Exit, and Productivity Improvements: Evidence from Chilean Plants," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(1), pages 245-276.
    7. Lejour, Arjan & Rojas-Romagosa, Hugo & Verweij, Gerard, 2008. "Opening services markets within Europe: Modelling foreign establishments in a CGE framework," Economic Modelling, Elsevier, vol. 25(5), pages 1022-1039, September.
    8. Leimbach, Marian & Edenhofer, Ottmar, 2007. "Technological spillovers within multi-region models: Intertemporal optimization beyond the Negishi approach," Economic Modelling, Elsevier, vol. 24(2), pages 272-294, March.
    9. James R. Markusen, 2004. "Multinational Firms and the Theory of International Trade," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262633078, April.
    10. Susanto Basu & David N. Weil, 1998. "Appropriate Technology and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1025-1054.
    11. Brian J. Aitken & Ann E. Harrison, 2022. "Do Domestic Firms Benefit from Direct Foreign Investment? Evidence from Venezuela," World Scientific Book Chapters, in: Globalization, Firms, and Workers, chapter 6, pages 139-152, World Scientific Publishing Co. Pte. Ltd..
    12. Lovely, Mary & Popp, David, 2011. "Trade, technology, and the environment: Does access to technology promote environmental regulation?," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 16-35, January.
    13. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    14. Sofronis K. Clerides & Saul Lach & James R. Tybout, 1998. "Is Learning by Exporting Important? Micro-Dynamic Evidence from Colombia, Mexico, and Morocco," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 903-947.
    15. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    16. Blomström, Magnus & Kokko, Ari, 2003. "The Economics of Foreign Direct Investment Incentives," EIJS Working Paper Series 168, Stockholm School of Economics, The European Institute of Japanese Studies.
    17. Leimbach, Marian & Baumstark, Lavinia, 2010. "The impact of capital trade and technological spillovers on climate policies," Ecological Economics, Elsevier, vol. 69(12), pages 2341-2355, October.
    18. Ram C. Acharya & Wolfgang Keller, 2009. "Technology transfer through imports," Canadian Journal of Economics, Canadian Economics Association, vol. 42(4), pages 1411-1448, November.
    19. Löschel, Andreas & Otto, Vincent M., 2009. "Technological uncertainty and cost effectiveness of CO2 emission reduction," Energy Economics, Elsevier, vol. 31(Supplemen), pages 4-17.
    20. David Popp, 2011. "International Technology Transfer, Climate Change, and the Clean Development Mechanism," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 131-152, Winter.
    21. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    22. Springer, Katrin, 1998. "The DART general equilibrium model: A technical description," Kiel Working Papers 883, Kiel Institute for the World Economy (IfW Kiel).
    23. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    24. Keller, Wolfgang, 1998. "Are international R&D spillovers trade-related?: Analyzing spillovers among randomly matched trade partners," European Economic Review, Elsevier, vol. 42(8), pages 1469-1481, September.
    25. Tobin, James, 1969. "A General Equilibrium Approach to Monetary Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 1(1), pages 15-29, February.
    26. Wolfgang Keller & Stephen R. Yeaple, 2009. "Multinational Enterprises, International Trade, and Productivity Growth: Firm-Level Evidence from the United States," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 821-831, November.
    27. Mary Amiti & Jozef Konings, 2007. "Trade Liberalization, Intermediate Inputs, and Productivity: Evidence from Indonesia," American Economic Review, American Economic Association, vol. 97(5), pages 1611-1638, December.
    28. Codsi, George & Pearson, K R & Wilcoxen, Peter J, 1992. "General-Purpose Software for Intertemporal Economic Models," Computer Science in Economics & Management, Kluwer;Society for Computational Economics, vol. 5(1), pages 57-79, February.
    29. Thomas L. Brewer, 2008. "Climate change technology transfer: a new paradigm and policy agenda," Climate Policy, Taylor & Francis Journals, vol. 8(5), pages 516-526, September.
    30. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    31. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    32. Reyer Gerlagh & Onno Kuik, 2007. "Carbon Leakage with International Technology Spillovers," Working Papers 2007.33, Fondazione Eni Enrico Mattei.
    33. Bruce Blonigen, 2005. "A Review of the Empirical Literature on FDI Determinants," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 33(4), pages 383-403, December.
    34. Robert N. Stavins, 2011. "The Problem of the Commons: Still Unsettled after 100 Years," American Economic Review, American Economic Association, vol. 101(1), pages 81-108, February.
    35. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    36. Richard Freeman, 2010. "Globalization of scientific and engineering talent: international mobility of students, workers, and ideas and the world economy," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 19(5), pages 393-406.
    37. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    38. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    39. Francisco L. Rivera-Batiz & Luis A. Rivera-Batiz, 2018. "Economic Integration and Endogenous Growth," World Scientific Book Chapters, in: Francisco L Rivera-Batiz & Luis A Rivera-Batiz (ed.), International Trade, Capital Flows and Economic Development, chapter 1, pages 3-32, World Scientific Publishing Co. Pte. Ltd..
    40. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    41. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    42. Marian Leimbach & Klaus Eisenack, 2009. "A Trade Algorithm for Multi-Region Models Subject to Spillover Externalities," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 107-130, March.
    43. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    44. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    45. Hans van Meijl & Frank van Tongeren, 1999. "Endogenous International Technology Spillovers and Biased Technical Change in Agriculture," Economic Systems Research, Taylor & Francis Journals, vol. 11(1), pages 31-48.
    46. Jeffrey A. Frankel, 2003. "The Environment and Globalization," NBER Working Papers 10090, National Bureau of Economic Research, Inc.
    47. Cole, Matthew A. & Elliott, Robert J. R., 2003. "Determining the trade-environment composition effect: the role of capital, labor and environmental regulations," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 363-383, November.
    48. Coe, David T & Helpman, Elhanan & Hoffmaister, Alexander W, 1997. "North-South R&D Spillovers," Economic Journal, Royal Economic Society, vol. 107(440), pages 134-149, January.
    49. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    50. van Meijl, Hans & Frank van Tongeren, 1999. "Endogenous International Technology Spillovers and Biased Technical Change in the GTAP Model," GTAP Technical Papers 318, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    51. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    52. Jin, Wei, 2012. "Can technological innovation help China take on its climate responsibility? An intertemporal general equilibrium analysis," Energy Policy, Elsevier, vol. 49(C), pages 629-641.
    53. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    54. World Bank, 2008. "Global Economic Prospects 2008 : Technology Diffusion in the Developing World," World Bank Publications - Books, The World Bank Group, number 6335.
    55. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    56. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    57. Archibugi, Daniele & Iammarino, Simona, 1999. "The policy implications of the globalisation of innovation," Research Policy, Elsevier, vol. 28(2-3), pages 317-336, March.
    58. Haddad, Mona & Harrison, Ann, 1993. "Are there positive spillovers from direct foreign investment? : Evidence from panel data for Morocco," Journal of Development Economics, Elsevier, vol. 42(1), pages 51-74, October.
    59. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    60. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
    61. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    62. Jonathan Eaton & Samuel Kortum, 2002. "Technology, Geography, and Trade," Econometrica, Econometric Society, vol. 70(5), pages 1741-1779, September.
    63. Atkinson, Anthony B & Stiglitz, Joseph E, 1969. "A New View of Technological Change," Economic Journal, Royal Economic Society, vol. 79(315), pages 573-578, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Jin & ZhongXiang Zhang, 2016. "China's pursuit of environmentally sustainable development: Harnessing the new engine of technological innovation," CCEP Working Papers 1601, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    2. Rahman, Syed Mahbubur & Miah, Mohammad Dulal, 2017. "The impact of sources of energy production on globalization: Evidence from panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 110-115.
    3. Wang, Lei & Ramsey, Thomas Stephen, 2024. "Digital divide and environmental pressure: A countermeasure on the embodied carbon emissions in FDI," Technological Forecasting and Social Change, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Jin, 2012. "Can China Harness Globalization to Reap Carbon Savings? Modeling International Technology Diffusion in a Multi-region Framework," CAMA Working Papers 2012-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
    4. Jin, Wei & Zhang, ZhongXiang, 2014. "Explaining the Slow Pace of Energy Technological Innovation Why Market Conditions Matter?," Energy: Resources and Markets 165758, Fondazione Eni Enrico Mattei (FEEM).
    5. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    6. Wei Jin & ZhongXiang Zhang, 2014. "On the Mechanism of International Technology Diffusion for Energy Productivity Growth," Working Papers 2014.40, Fondazione Eni Enrico Mattei.
    7. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    9. De Cian, Enrica, 2006. "International Technology Spillovers in Climate-Economy Models: Two Possible Approaches," Climate Change Modelling and Policy Working Papers 12040, Fondazione Eni Enrico Mattei (FEEM).
    10. Jin, Wei, 2012. "Can technological innovation help China take on its climate responsibility? An intertemporal general equilibrium analysis," Energy Policy, Elsevier, vol. 49(C), pages 629-641.
    11. Leimbach, Marian & Baumstark, Lavinia, 2010. "The impact of capital trade and technological spillovers on climate policies," Ecological Economics, Elsevier, vol. 69(12), pages 2341-2355, October.
    12. Keller, Wolfgang, 2010. "International Trade, Foreign Direct Investment, and Technology Spillovers," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 793-829, Elsevier.
    13. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    14. Harrison, Ann & Rodríguez-Clare, Andrés, 2010. "Trade, Foreign Investment, and Industrial Policy for Developing Countries," Handbook of Development Economics, in: Dani Rodrik & Mark Rosenzweig (ed.), Handbook of Development Economics, edition 1, volume 5, chapter 0, pages 4039-4214, Elsevier.
    15. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    16. Neil Foster-McGregor, 2012. "Innovation and Technology Transfer across Countries," wiiw Research Reports 380, The Vienna Institute for International Economic Studies, wiiw.
    17. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    18. Damijan, Jože P. & Kostevc, Crt, 2007. "Knowledge Transfer, Innovation and Growth," Papers DYNREG06, Economic and Social Research Institute (ESRI).
    19. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    20. Hübler, Michael, 2009. "Energy saving technology diffusion via FDI and trade: a CGE model of China," Kiel Working Papers 1479, Kiel Institute for the World Economy (IfW Kiel).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chieco:v:34:y:2015:i:c:p:64-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/chieco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.