IDEAS home Printed from https://ideas.repec.org/p/eei/rpaper/eeri_rp_2003_05.html
   My bibliography  Save this paper

Term Structure of Interest Rates. Emergence of Power Laws and Scaling Laws

Author

Listed:
  • Thomas Alderweireld
  • Jean Nuyts

Abstract

The technique of Pad\'e Approximants, introduced in a previous work, is applied to extended recent data on the distribution of variations of interest rates compiled by the Federal Reserve System in the US. It is shown that new power laws and new scaling laws emerge for any maturity not only as a function of the Lag but also as a function of the average inital rate. This is especially true for the one year maturity where critical forms and critical exponents are obtained. This suggests future work in the direction of constructing a theory of variations of interest rates at a more ''microscopic'' level.

Suggested Citation

  • Thomas Alderweireld & Jean Nuyts, 2003. "Term Structure of Interest Rates. Emergence of Power Laws and Scaling Laws," EERI Research Paper Series EERI_RP_2003_05, Economics and Econometrics Research Institute (EERI), Brussels.
  • Handle: RePEc:eei:rpaper:eeri_rp_2003_05
    as

    Download full text from publisher

    File URL: http://www.eeri.eu/documents/wp/EERI_RP_2003_05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiziana Di Matteo & Tomaso Aste, 2002. "How Does The Eurodollar Interest Rate Behave?," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 107-122.
    2. Rafał Weron, 2001. "Levy-Stable Distributions Revisited: Tail Index> 2does Not Exclude The Levy-Stable Regime," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 209-223.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Alderweireld & Jean Nuyts, 2003. "Term Structure of Interest Rates.Emergence of Power Laws and Scaling Laws," Econometrics 0306001, University Library of Munich, Germany.
    2. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    3. Scalas, Enrico & Kim, Kyungsik, 2006. "The art of fitting financial time series with Levy stable distributions," MPRA Paper 336, University Library of Munich, Germany.
    4. Figueiredo, Annibal & Gleria, Iram & Matsushita, Raul & Da Silva, Sergio, 2004. "Lévy flights, autocorrelation, and slow convergence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 369-383.
    5. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    7. Kenneth Bruninx & Erik Delarue & William D'haeseleer, 2013. "Statistical description of the error on wind power forecasts via a Lévy α-stable distribution," RSCAS Working Papers 2013/50, European University Institute.
    8. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2009. "The expectation hypothesis of interest rates and network theory: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1137-1149.
    9. Jabłońska-Sabuka, Matylda & Teuerle, Marek & Wyłomańska, Agnieszka, 2017. "Bivariate sub-Gaussian model for stock index returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 628-637.
    10. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    11. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Trinidad Segovia, J.E., 2013. "Measuring the self-similarity exponent in Lévy stable processes of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5330-5345.
    12. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    13. Alderweireld, Thomas & Nuyts, Jean, 2004. "Detailed empirical study of the term structure of interest rates. Emergence of power laws and scaling laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 331(3), pages 602-616.
    14. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    15. Nuyts, Jean & Platten, Isabelle, 2001. "Phenomenology of the term structure of interest rates with Padé Approximants," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(3), pages 528-546.
    16. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    17. Steinbacher, Matjaz, 2009. "Acceptable Risk in a Portfolio Analysis," MPRA Paper 13569, University Library of Munich, Germany.
    18. Nassim Nicholas Taleb, 2020. "Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications," Papers 2001.10488, arXiv.org, revised Nov 2022.
    19. Samet Gunay & Audil Rashid Khaki, 2018. "Best Fitting Fat Tail Distribution for the Volatilities of Energy Futures: Gev, Gat and Stable Distributions in GARCH and APARCH Models," JRFM, MDPI, vol. 11(2), pages 1-19, June.
    20. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.

    More about this item

    Keywords

    Interest rates scaling laws;

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eei:rpaper:eeri_rp_2003_05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Julia van Hove (email available below). General contact details of provider: https://edirc.repec.org/data/eeriibe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.