IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-130318.html
   My bibliography  Save this paper

Signal Detection in High Dmension: The Multispiked Case

Author

Listed:
  • Alexei Onatski
  • Marcelo Moreira J.
  • Marc Hallin

Abstract

This paper deals with the local asymptotic structure, in the sense ofLe Cam’s asymptotic theory of statistical experiments, of the signal detectionproblem in high dimension. More precisely, we consider the problemof testing the null hypothesis of sphericity of a high-dimensional covariancematrix against an alternative of (unspecified) multiple symmetry-breakingdirections (multispiked alternatives). Simple analytical expressions for theasymptotic power envelope and the asymptotic powers of previously proposedtests are derived. These asymptotic powers are shown to lie verysubstantially below the envelope, at least for relatively small values of thenumber of symmetry-breaking directions under the alternative. In contrast,the asymptotic power of the likelihood ratio test based on the eigenvalues ofthe sample covariance matrix is shown to be close to that envelope. Theseresults extend to the case of multispiked alternatives the findings of an earlierstudy (Onatski, Moreira and Hallin, 2011) of the single-spiked case. The methods we are using here, however, are entirely new, as the Laplace approximationsconsidered in the single-spiked context do not extend to themultispiked case.

Suggested Citation

  • Alexei Onatski & Marcelo Moreira J. & Marc Hallin, 2012. "Signal Detection in High Dmension: The Multispiked Case," Working Papers ECARES ECARES 2012-036, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/130318
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/130318/1/2012-036-ONATSKI_MOREIRA_HALLIN-signal.pdf
    File Function: 2012-036-ONATSKI_MOREIRA_HALLIN-signal
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    2. Alexei Onatski & Marcelo Moreira J. & Marc Hallin, 2011. "Asymptotic Power of Sphericity Tests for High-Dimensional Data," Working Papers ECARES ECARES 2011-018, ULB -- Universite Libre de Bruxelles.
    3. Schott, James R., 2006. "A high-dimensional test for the equality of the smallest eigenvalues of a covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 827-843, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badi H. Baltagi & Chihwa Kao & Fa Wang, 2017. "Asymptotic power of the sphericity test under weak and strong factors in a fixed effects panel data model," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 853-882, October.
    2. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    3. Christine Cutting & Davy Paindaveine & Thomas Verdebout, 2015. "Testing Uniformity on High-Dimensional Spheres against Contiguous Rotationally Symmetric Alternatives," Working Papers ECARES ECARES 2015-04, ULB -- Universite Libre de Bruxelles.
    4. Anders Bredahl Kock & David Preinerstorfer, 2019. "Power in High‐Dimensional Testing Problems," Econometrica, Econometric Society, vol. 87(3), pages 1055-1069, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Cheng, 2014. "Asymptotic power of likelihood ratio tests for high dimensional data," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 184-189.
    2. Guo, Wenwen & Cui, Hengjian, 2019. "Projection tests for high-dimensional spiked covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 21-32.
    3. Marc Hallin & Marcelo Moreira J. & Alexei Onatski, 2013. "Group Invariance, Likelihood Ratio Tests, and the Incidental Parameter Problem in a High-Dimensional Linear Model," Working Papers ECARES ECARES 2013-04, ULB -- Universite Libre de Bruxelles.
    4. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    5. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    6. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    7. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
    8. Chen, Liang, 2012. "Identifying observed factors in approximate factor models: estimation and hypothesis testing," MPRA Paper 37514, University Library of Munich, Germany.
    9. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    10. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    11. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    12. Dedu, Vasile & Stoica, Tiberiu, 2014. "The Impact of Monetaru Policy on the Romanian Economy," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 71-86, June.
    13. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
    14. Panagiotidis, Theodore & Printzis, Panagiotis, 2020. "What is the investment loss due to uncertainty?," Global Finance Journal, Elsevier, vol. 45(C).
    15. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    16. Claudio Barbieri & Mattia Guerini & Mauro Napoletano, 2021. "The anatomy of government bond yields synchronization in the Eurozone," SciencePo Working papers Main hal-03373853, HAL.
    17. Piyachart Phiromswad & Takeshi Yagihashi, 2016. "Empirical identification of factor models," Empirical Economics, Springer, vol. 51(2), pages 621-658, September.
    18. Andres Sagner, 2020. "High Dimensional Quantile Factor Analysis," Working Papers Central Bank of Chile 886, Central Bank of Chile.
    19. Angelopoulos, Jason & Sahoo, Satya & Visvikis, Ilias D., 2020. "Commodity and transportation economic market interactions revisited: New evidence from a dynamic factor model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    20. Elena Afanasyeva & Jochen Güntner, 2014. "Lending Standards, Credit Booms and Monetary Policy," Economics working papers 2014-11, Department of Economics, Johannes Kepler University Linz, Austria.

    More about this item

    Keywords

    sphericity tests; large dimentionality; asymptotic power; spiked covariance; contiguity; power enveloppe;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/130318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/arulbbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.