IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1894.html
   My bibliography  Save this paper

Learning from Data and Network Effects: The Example of Internet Search

Author

Listed:
  • Maximilian Schäfer
  • Geza Sapi

Abstract

The rise of dominant firms in data driven industries is often credited to their alleged data advantage. Empirical evidence lending support to this conjecture is surprisingly scarce. In this paper we document that data as an input into machine learning tasks display features that support the claim of data being a source of market power. We study how data on keywords improve the search result quality on Yahoo!. Search result quality increases when more users search a keyword. In addition to this direct network effect caused by more users, we observe a novel externality that is caused by the amount of data that the search engine collects on the particular users. More data on the personal search histories of the users reinforce the direct network effect stemming from the number of users searching the same keyword. Our findings imply that a search engine with access to longer user histories may improve the quality of its search results faster than an otherwise equally efficient rival with the same size of user base but access to shorter user histories.

Suggested Citation

  • Maximilian Schäfer & Geza Sapi, 2020. "Learning from Data and Network Effects: The Example of Internet Search," Discussion Papers of DIW Berlin 1894, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1894
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.798442.de/dp1894.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cédric Argenton & Jens Prüfer, 2012. "Search Engine Competition With Network Externalities," Journal of Competition Law and Economics, Oxford University Press, vol. 8(1), pages 73-105.
    2. Francesco Decarolis & Gabriele Rovigatti, 2021. "From Mad Men to Maths Men: Concentration and Buyer Power in Online Advertising," American Economic Review, American Economic Association, vol. 111(10), pages 3299-3327, October.
    3. Francesco Decarolis & Maris Goldmanis & Antonio Penta, 2020. "Marketing Agencies and Collusive Bidding in Online Ad Auctions," Management Science, INFORMS, vol. 66(10), pages 4433-4454, October.
    4. Ramon Casadesus-Masanell & Andres Hervas-Drane, 2015. "Competing with Privacy," Management Science, INFORMS, vol. 61(1), pages 229-246, January.
    5. Jörg Claussen & Christian Peukert & Ananya Sen, 2019. "The Editor vs. the Algorithm: Returns to Data and Externalities in Online News," CESifo Working Paper Series 8012, CESifo.
    6. Lesley Chiou & Catherine Tucker, 2017. "Search Engines and Data Retention: Implications for Privacy and Antitrust," NBER Working Papers 23815, National Bureau of Economic Research, Inc.
    7. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    8. Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019. "The Impact of Big Data on Firm Performance: An Empirical Investigation," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens Prüfer & Christoph Schottmüller, 2021. "Competing with Big Data," Journal of Industrial Economics, Wiley Blackwell, vol. 69(4), pages 967-1008, December.
    2. Laura Abrardi & Carlo Cambini & Laura Rondi, 2022. "Artificial intelligence, firms and consumer behavior: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 969-991, September.
    3. Yiquan Gu & Leonardo Madio & Carlo Reggiani, 2022. "Data brokers co-opetition [The impact of big data on firm performance: an empirical investigation]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 820-839.
    4. Georgios Petropoulos & Bertin Martens & Geoffrey Parker & Marshall Van Alstyne, 2023. "Platform Competition and Information Sharing," CESifo Working Paper Series 10663, CESifo.
    5. Grazia Cecere & Vincent Lefrere & Fabrice Le Guel, 2022. "Third parties in the app market and economics of privacy," Economics Bulletin, AccessEcon, vol. 42(2), pages 1040-1049.
    6. Joan Calzada & Nestor Duch-Brown & Ricard Gil, 2021. "Do search engines increase concentration in media markets?," UB School of Economics Working Papers 2021/415, University of Barcelona School of Economics.
    7. Bergemann, Dirk & Ottaviani, Marco, 2021. "Information Markets and Nonmarkets," CEPR Discussion Papers 16459, C.E.P.R. Discussion Papers.
    8. Francesco Angelini & Luca V. Ballestra & Massimiliano Castellani, 2022. "Digital leisure and the gig economy: a two-sector model of growth," Papers 2212.02119, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kesler, Reinhold & Kummer, Michael E. & Schulte, Patrick, 2019. "Competition and privacy in online markets: Evidence from the mobile app industry," ZEW Discussion Papers 19-064, ZEW - Leibniz Centre for European Economic Research.
    2. Yiquan Gu & Leonardo Madio & Carlo Reggiani, 2022. "Data brokers co-opetition [The impact of big data on firm performance: an empirical investigation]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 820-839.
    3. Steffen, Nico & Wiewiorra, Lukas & Kroon, Peter, 2021. "Wettbewerb und Regulierung in der Plattform- und Datenökonomie," WIK Discussion Papers 481, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH.
    4. Schaefer, Maximilian & Sapi, Geza & Lorincz, Szabolcs, 2018. "The effect of big data on recommendation quality: The example of internet search," DICE Discussion Papers 284, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    5. Bergemann, Dirk & Ottaviani, Marco, 2021. "Information Markets and Nonmarkets," CEPR Discussion Papers 16459, C.E.P.R. Discussion Papers.
    6. Joan Calzada & Nestor Duch-Brown & Ricard Gil, 2021. "Do search engines increase concentration in media markets?," UB School of Economics Working Papers 2021/415, University of Barcelona School of Economics.
    7. Calvano, Emilio & Polo, Michele, 2021. "Market power, competition and innovation in digital markets: A survey," Information Economics and Policy, Elsevier, vol. 54(C).
    8. Flavio Pino, 2022. "The microeconomics of data – a survey," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 49(3), pages 635-665, September.
    9. Ehsan Valavi & Joel Hestness & Newsha Ardalani & Marco Iansiti, 2022. "Time and the Value of Data," Papers 2203.09118, arXiv.org.
    10. Shan Huang & Michael Allan Ribers & Hannes Ullrich, 2021. "The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing," Discussion Papers of DIW Berlin 1939, DIW Berlin, German Institute for Economic Research.
    11. Koski, Heli & Kässi, Otto & Braesemann, Fabian, 2020. "Killers on the Road of Emerging Start-ups – Implications for Market Entry and Venture Capital Financing," ETLA Working Papers 81, The Research Institute of the Finnish Economy.
    12. de Cornière, Alexandre & Taylor, Greg, 2022. "Data and Competition: a Simple Framework with Applications to Mergers and Market Structure," CEPR Discussion Papers 14446, C.E.P.R. Discussion Papers.
    13. Guy Aridor & Yeon-Koo Che & Tobias Salz, 2020. "The Effect of Privacy Regulation on the Data Industry: Empirical Evidence from GDPR," NBER Working Papers 26900, National Bureau of Economic Research, Inc.
    14. Graef, Inge & Prüfer, Jens, 2021. "Governance of data sharing: A law & economics proposal," Research Policy, Elsevier, vol. 50(9).
    15. Dipankar Das, 2023. "A Model of Competitive Assortment Planning Algorithm," Papers 2307.09479, arXiv.org.
    16. MARTENS Bertin, 2020. "An economic perspective on data and platform market power," JRC Working Papers on Digital Economy 2020-09, Joint Research Centre.
    17. Schaefer, Maximilian & Sapi, Geza, 2023. "Complementarities in learning from data: Insights from general search," Information Economics and Policy, Elsevier, vol. 65(C).
    18. Catherine Tucker, 2019. "Digital Data, Platforms and the Usual [Antitrust] Suspects: Network Effects, Switching Costs, Essential Facility," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 54(4), pages 683-694, June.
    19. Bleier, Alexander & Goldfarb, Avi & Tucker, Catherine, 2020. "Consumer privacy and the future of data-based innovation and marketing," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 466-480.
    20. de Cornière, Alexandre & Taylor, Greg, 2020. "Data and Competition: a General Framework with Applications to Mergers, Market Structure, and Privacy Policy," TSE Working Papers 20-1076, Toulouse School of Economics (TSE).

    More about this item

    Keywords

    Competition; network effects; search engines; Big Data;
    All these keywords.

    JEL classification:

    • L12 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Monopoly; Monopolization Strategies
    • L41 - Industrial Organization - - Antitrust Issues and Policies - - - Monopolization; Horizontal Anticompetitive Practices
    • L81 - Industrial Organization - - Industry Studies: Services - - - Retail and Wholesale Trade; e-Commerce
    • L86 - Industrial Organization - - Industry Studies: Services - - - Information and Internet Services; Computer Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.